Lecture 6 2020/2021

Microwave Devices and Circuits for Radiocommunications

2020/2021

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course + laboratory)
- Lectures- associate professor Radu Damian
 - Wednesday 15-17, Online, Microsoft Teams
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - 3p=+0.5p
 - all materials/equipments authorized

Materials

- RF-OPTO
 - http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering",
 Wiley; 4th edition, 2011
 - 1 exam problem Pozar
- Photos
 - sent by email/online exam
 - used at lectures/laboratory

Profile photo

Profile photo – online "exam"

Examene online: 2020/2021

Disciplina: MDC (Microwave Devices and Circuits (Engleza))

Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	03/03/2021; 10:00	08/04/2021; 08:00	Online "exam" created f
2	Mini Test 1 (lecture 2)	03/03/2021; 15:35	03/03/2021; 15:50	The current test consis

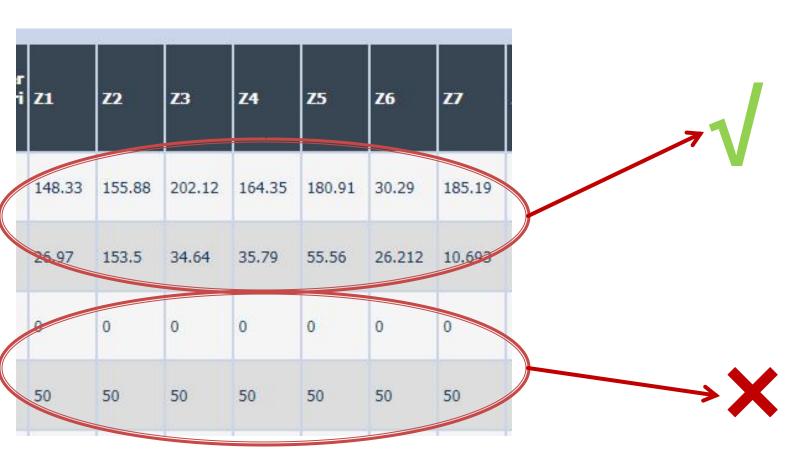
Online

access to online exams requires the password

received by email

Online results submission

many numerical values



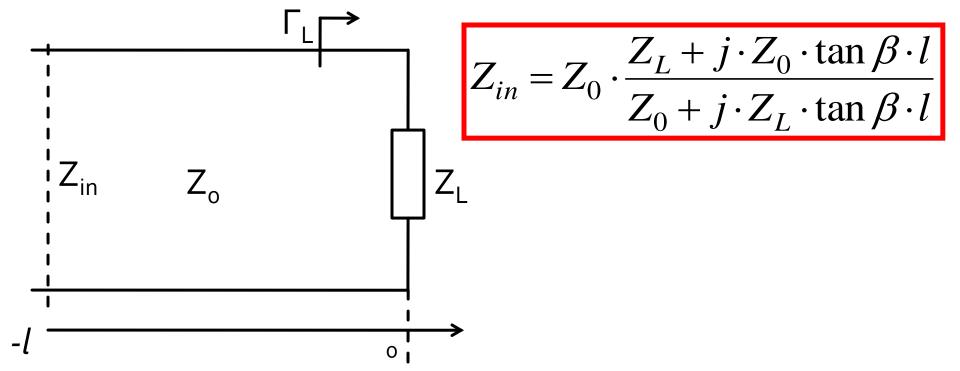
Online results submission

Grade = Quality of the work + + Quality of the submission

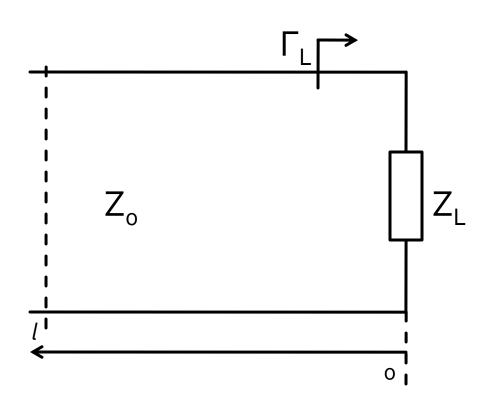
Important

The lossless line

• input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance $\boldsymbol{Z_o}$, loaded with an arbitrary impedance $\boldsymbol{Z_L}$



The lossless line



$$V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$$

$$Z_L = \frac{V(0)}{I(0)} \qquad Z_L = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} \cdot Z_0$$

voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

- Z_o real

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

time-average Power flow along the line

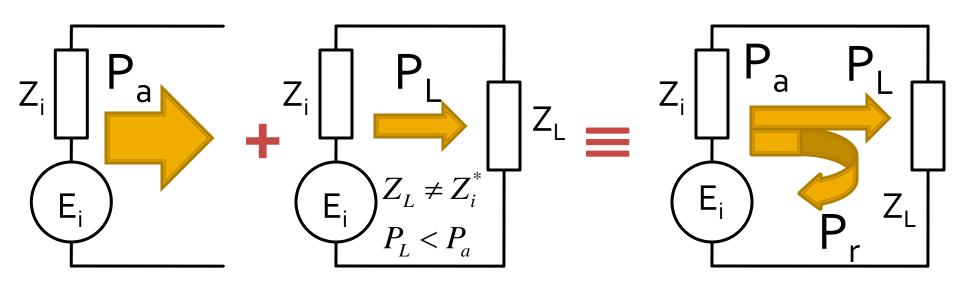
$$P_{avg} = \frac{1}{2} \cdot \text{Re} \left\{ V(z) \cdot I(z)^* \right\} = \frac{1}{2} \cdot \frac{\left| V_0^+ \right|^2}{Z_0} \cdot \text{Re} \left\{ 1 - \Gamma^* \cdot e^{-2j \cdot \beta \cdot z} + \Gamma \cdot e^{2j \cdot \beta \cdot z} - \left| \Gamma \right|^2 \right\}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{\left| V_0^+ \right|^2}{Z_0} \cdot \left(1 - \left| \Gamma \right|^2 \right)$$

$$(z - z^*) = \text{Im}$$

- Total power delivered to the load = Incident power – "Reflected" power
- Return "Loss" [dB] $RL = -20 \cdot \log |\Gamma|$ [dB]

Reflection and power / Model



- The source has the ability to sent to the load a certain maximum power (available power) P_a
- For a particular load the power sent to the load is less than the maximum (mismatch) P_L < P_a
- The phenomenon is "as if" (model) some of the power is reflected $P_r = P_a P_l$
- The power is a scalar!

Matching, from the point of view of power transmission

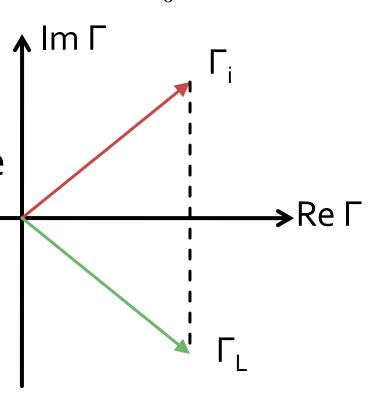
$$Z_L = Z_i^*$$

If we choose a real Zo

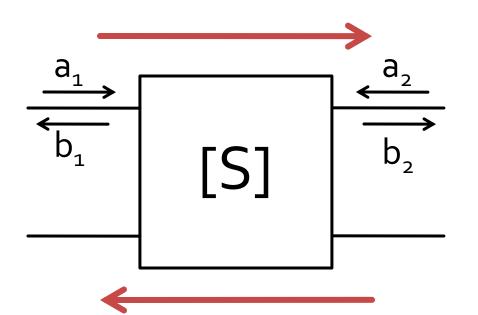
$$\Gamma = \frac{Z - Z_0}{Z + Z_0}$$

$$\Gamma_L = \Gamma_i^*$$

- complex numbers
- in the complex plane



Scattering matrix – S



$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$|S_{21}|^2 = \frac{Power in Z_0 load}{Power from Z_0 source}$$

- a,b
 - information about signal power AND signal phase
- S_{ij}
 - network effect (gain) over signal power including phase information

Power dividers and directional couplers

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers

Introduction

Power dividers and couplers

- Desired functionality:
 - division
 - combining
- of signal power

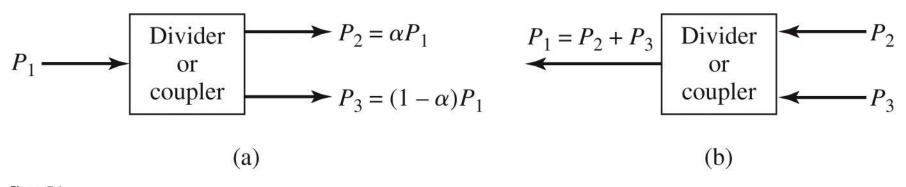
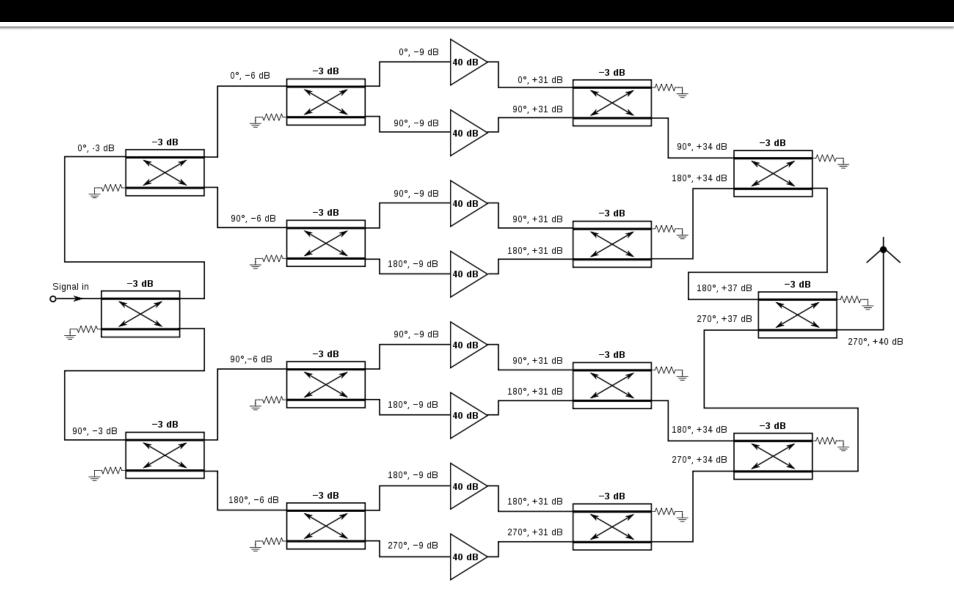


Figure 7.1

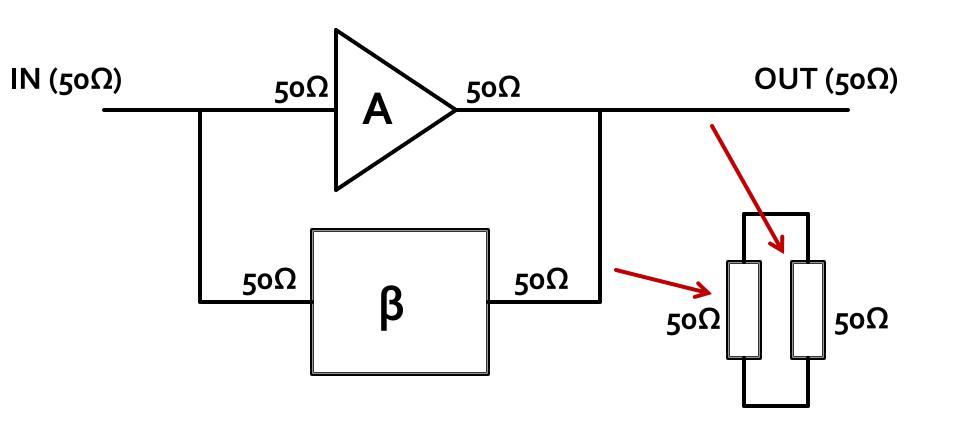
© John Wiley & Sons, Inc. All rights reserved.

Balanced amplifiers



Matching

feedback amplifier



- also known as T-Junctions
- characterized by a 3x3 S matrix

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - lossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} S_{ij} = S_{ji}, \forall j \neq i$$

$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0$

then the S matrix is:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- lossless network
 - all the power injected in one port will be found

exiting the network on all ports
$$[S]^* \cdot [S]^t = [1] \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = \delta_{ij}, \forall i, j$$

$$\sum_{k=1}^N S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

lossless network

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix} \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{ki}^* = 1$$

$$\sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

6 equations / 3 unknowns

$$|S_{12}|^2 + |S_{13}|^2 = 1$$
 $S_{13}^* S_{23}^* = 0$
 $|S_{12}|^2 + |S_{23}|^2 = 1$ $S_{12}^* S_{13}^* = 0$
 $|S_{13}|^2 + |S_{23}|^2 = 1$ $S_{23}^* S_{12}^* = 0$

no solution is possible

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network cannot be simultaneously:
 - reciprocal
 - lossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Nonreciprocal Three-Port Networks

- usually containing anisotropic materials, ferrites
- nonreciprocal, but matched at all ports and lossless $S_{ij} \neq S_{ji}$
- S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & 0 \end{bmatrix}$$

6 equations / 3 unknowns

$$|S_{12}|^2 + |S_{13}|^2 = 1$$
 $S_{31}^* S_{32} = 0$
 $|S_{21}|^2 + |S_{23}|^2 = 1$ $S_{21}^* S_{23} = 0$
 $|S_{31}|^2 + |S_{32}|^2 = 1$ $S_{12}^* S_{13} = 0$

Nonreciprocal Three-Port Networks

- two possible solutions
- circulators
 - clockwise circulation

$$S_{12} = S_{23} = S_{31} = 0$$

 $|S_{21}| = |S_{32}| = |S_{13}| = 1$

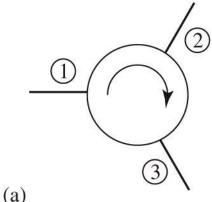
$$[S] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

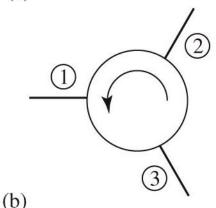
counterclockwise circulation

$$S_{21} = S_{32} = S_{13} = 0$$

$$|S_{12}| = |S_{23}| = |S_{31}| = 1$$

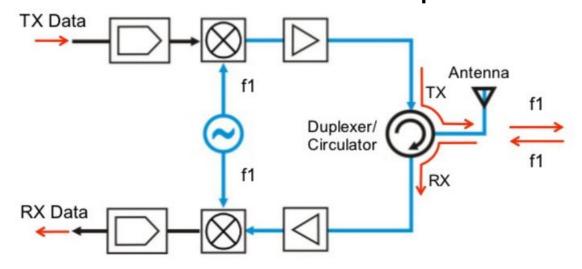
$$[S] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

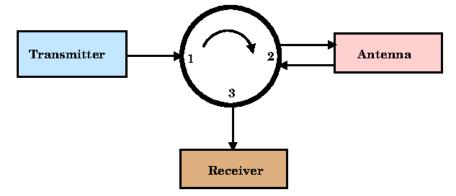




Nonreciprocal Three-Port Networks

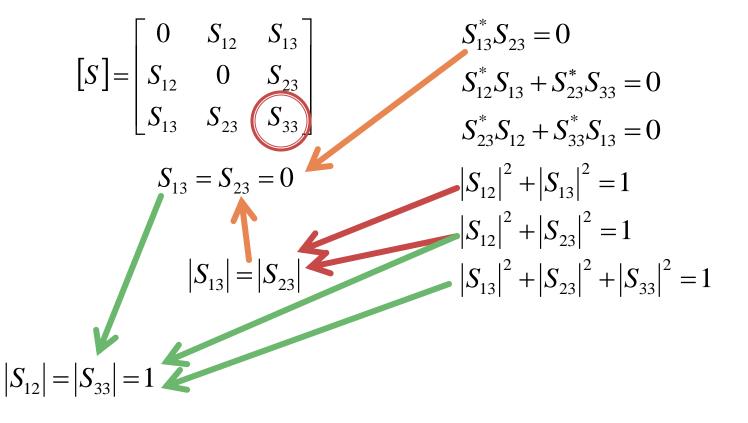
circulator often found in duplexer





Mismatched Three-Port Networks

 A lossless and reciprocal three-port network can be matched only on two ports, eg. 1 and 2:



Mismatched Three-Port Networks

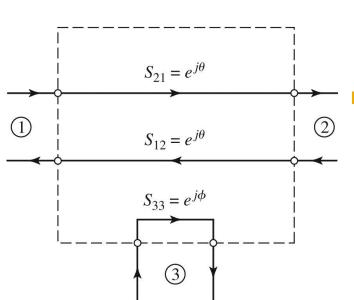
A lossless and reciprocal three-port network

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & e^{j\theta} & 0 \\ e^{j\theta} & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & e^{j\theta} & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$$

- A lossless and reciprocal threeport network **degenerates** into two separate components:
 - a matched two-port line
 - a totally mismatched oneport:



characterized by a 4x4 S matrix

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - lossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} S_{ij} = S_{ji}, \forall j \neq i$$

$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0, S_{44} = 0$

then the S matrix is:

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- lossless network
 - all the power injected in one port will be found exiting the network on all ports

$$[S]^* \cdot [S]^t = [1] \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = S_{ij}, \forall i, j$$
$$\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

$$S_{13}^* \cdot S_{23} + S_{14}^* \cdot S_{24} = 0 \quad / \cdot S_{24}^*$$

$$S_{14}^* \cdot S_{13} + S_{24}^* \cdot S_{23} = 0 \quad / \cdot S_{13}^*$$

$$S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$$

$$S_{12}^* \cdot S_{23} + S_{14}^* \cdot S_{34} = 0 \quad / \cdot S_{12}$$

$$S_{14}^* \cdot S_{12} + S_{34}^* \cdot S_{23} = 0 \quad / \cdot S_{34}^*$$

$$S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$$

- one solution: $S_{14} = S_{23} = 0$
- resulting coupler is directional

$$|S_{12}|^{2} + |S_{13}|^{2} = 1$$

$$|S_{12}|^{2} + |S_{24}|^{2} = 1$$

$$|S_{13}|^{2} + |S_{34}|^{2} = 1$$

$$|S_{24}|^{2} + |S_{34}|^{2} = 1$$

$$|S_{24}|^{2} + |S_{34}|^{2} = 1$$

$$|S_{24}|^{2} + |S_{34}|^{2} = 1$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix} \qquad \beta - \frac{1}{2}$$

$$|S_{12}| = |S_{34}| = \alpha$$
 $|S_{13}| = |S_{24}| = \beta$

 β – voltage coupling coefficient

We can choose the phase reference

$$S_{12} = S_{34} = \alpha \qquad S_{13} = \beta \cdot e^{j\theta} \qquad S_{24} = \beta \cdot e^{j\phi}$$

$$S_{12}^* \cdot S_{13} + S_{24}^* \cdot S_{34} = 0 \qquad \rightarrow \qquad \theta + \phi = \pi \pm 2 \cdot n \cdot \pi$$

$$\left| S_{12} \right|^2 + \left| S_{24} \right|^2 = 1 \qquad \rightarrow \qquad \alpha^2 + \beta^2 = 1$$

 The other possible solution for previous equations offer either essentially the same result (with a different phase reference) or the degenerate case (2 separate two port networks side by side)

$$S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$$
 $S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - lossless
- is always directional
 - the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

Four-Port Networks

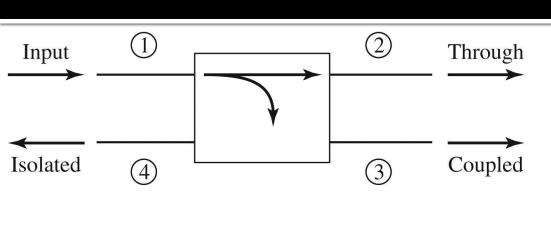
- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

• An Antisymmetric Coupler $\theta = 0, \phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

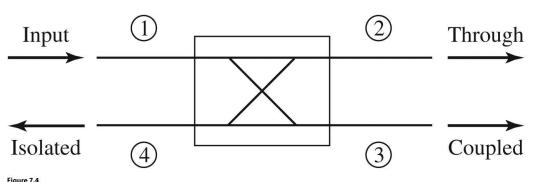
Directional Coupler



$$|S_{12}|^2 = \alpha^2 = 1 - \beta^2$$

$$\left|S_{13}\right|^2 = \beta^2$$

Coupling



© John Wiley & Sons, Inc. All rights reserved.

$$C = 10\log\frac{P_1}{P_3} = -20\cdot\log(\beta)[dB]$$

Directivity

$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) [dB]$$

Isolation

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

$$I = D + C , [dB]$$

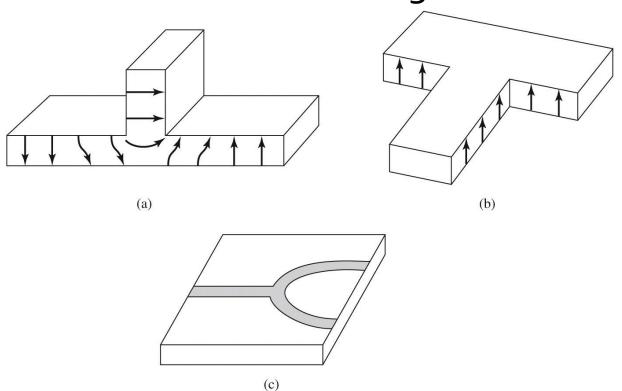
Power dividers

Three-Port Networks

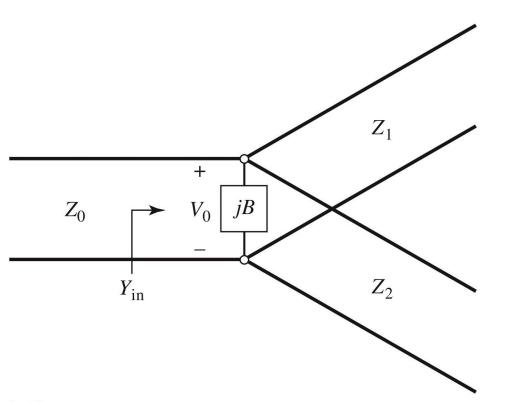
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network cannot be simultaneously:
 - reciprocal
 - lossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

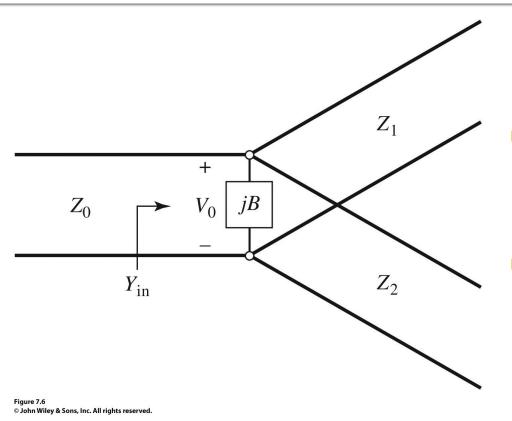
- consists in splitting an input line into two separate output lines
- available in various technologies for the lines



if the lines are lossless, the network is reciprocal, so it cannot be matched at all ports simultaneously



- there may be fringing fields and higher order modes associated with the discontinuity at such a junction
- the stored energy can be accounted for by a lumped susceptance: B
- Designing the power divider targets matching to the input line Z₀
 - outputs (unmatched, Z_1 and Z_2) can be, if needed, matched to Z_0 ($\lambda/4$, binomial, Chebyshev)



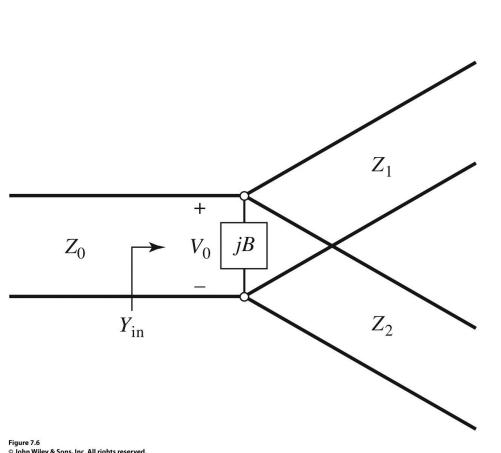
$$Y_{in} = j \cdot B + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

- If the transmission lines are assumed to be lossless, then the characteristic impedances are real
- the matching condition can be met only if B ≅ o thus the matching condition is:

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

In practice, if **B** is not negligible, some type of discontinuity compensation or a reactive tuning element can usually be used to cancel this susceptance, at least over a narrow frequency range.

if V_o is the voltage at the junction, we can compute how the input power is divided between the two output lines



$$P_{in} = \frac{1}{2} \cdot \frac{V_0^2}{Z_0}$$

$$P_1 = \frac{1}{2} \cdot \frac{V_0^2}{Z_1}$$

$$P_2 = \frac{1}{2} \cdot \frac{V_0^2}{Z_2}$$

$$P_2 = \frac{1}{2} \cdot \frac{V_0^2}{Z_2}$$

$$P_{in} = P_1 + P_2 \quad \text{(lossless/input matching)}$$

$$\frac{P_1}{P_2} = \frac{Z_2}{Z_1} = \alpha$$
 (power division between the two output lines)

$$P_{1} = P_{in} \cdot \frac{Z_{2}}{Z_{1} + Z_{2}}$$
 $P_{2} = P_{in} \cdot \frac{Z_{1}}{Z_{1} + Z_{2}}$

$$P_{1} = P_{in} \cdot \frac{\alpha}{1+\alpha}$$

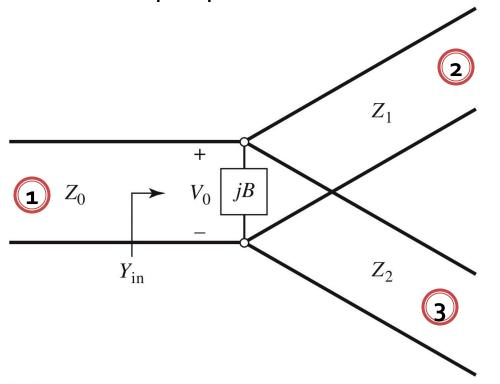
$$P_{2} = P_{in} \cdot \frac{1}{1+\alpha}$$

$$Z_{1} = Z_{0} \cdot \left(1 + \frac{1}{\alpha}\right)$$

$$Z_{2} = Z_{0} \cdot \left(1 + \alpha\right)$$

S matrix

- lossless (unitary matrix)
- reciprocal (symmetrical matrix)
- input port is matched $S_{11} = 0$



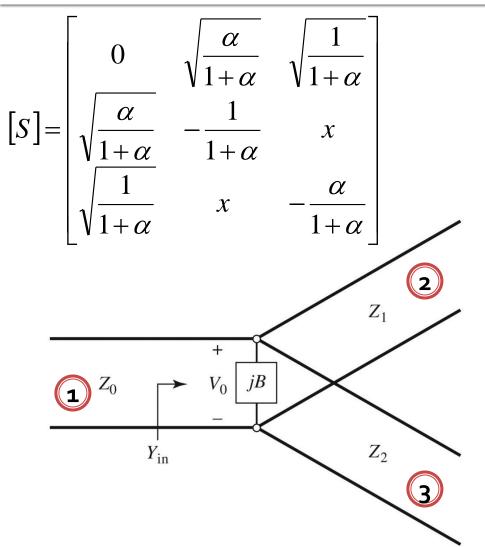
$$P_{2} = P_{1} \cdot \frac{\alpha}{1+\alpha}$$
 $S_{21} = S_{12} = \sqrt{\frac{\alpha}{1+\alpha}}$ $P_{3} = P_{1} \cdot \frac{1}{1+\alpha}$ $S_{31} = S_{13} = \sqrt{\frac{1}{1+\alpha}}$

the reflection coefficients seen looking into the output ports

$$S_{22} = \Gamma_1 = \frac{Z_0 || Z_2 - Z_1}{Z_0 || Z_2 + Z_1} = -\frac{1}{1 + \alpha}$$

$$S_{33} = \Gamma_2 = \frac{Z_0 || Z_1 - Z_2}{Z_0 || Z_1 + Z_2} = -\frac{\alpha}{1 + \alpha}$$

© John Wiley & Sons, Inc. All rights reserved



Unitary matrix, columns 1 and 2

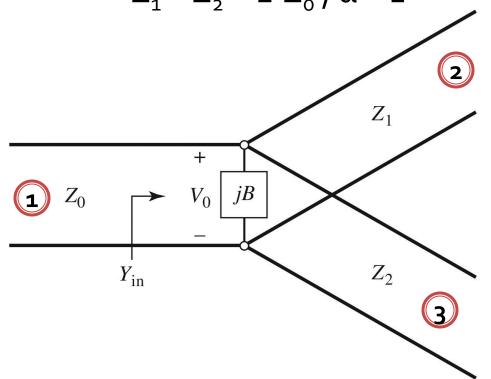
$$0 - \frac{1}{1+\alpha} \cdot \sqrt{\frac{\alpha}{1+\alpha}} + x \cdot \sqrt{\frac{1}{1+\alpha}} = 0$$

$$S_{23} = S_{32} = \frac{\sqrt{\alpha}}{1 + \alpha}$$

$$[S] = \begin{bmatrix} 0 & \sqrt{\frac{\alpha}{1+\alpha}} & \sqrt{\frac{1}{1+\alpha}} \\ \sqrt{\frac{\alpha}{1+\alpha}} & -\frac{1}{1+\alpha} & \frac{\sqrt{\alpha}}{1+\alpha} \\ \sqrt{\frac{1}{1+\alpha}} & \frac{\sqrt{\alpha}}{1+\alpha} & -\frac{\alpha}{1+\alpha} \end{bmatrix}$$

- 3dB divider
 - equal splitting of the power between the two outputs

•
$$Z_1 = Z_2 = 2 \cdot Z_0$$
, $\alpha = 1$



$$[S] = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

If we add $\lambda/4$ transformers to match outputs to Z_0 S matrix:

$$[S] = \begin{bmatrix} 0 & -\frac{j}{\sqrt{2}} & -\frac{j}{\sqrt{2}} \\ -\frac{j}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{j}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Example

• Design a lossless T-junction divider with a 30Ω source impedance to give a 3:1 power split. Design quarter-wave matching transformers to convert the impedances of the output lines to 30Ω . (Pozar problem)

$$\begin{split} P_{in} &= \frac{1}{2} \cdot \frac{V_0^2}{Z_0} \qquad \begin{cases} P_1 + P_2 = P_{in} \\ P_1 : P_2 = 3 : 1 \end{cases} \Rightarrow \begin{cases} P_1 = \frac{1}{4} \cdot P_{in} \\ P_2 = \frac{3}{4} \cdot P_{in} \end{cases} \\ P_1 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_1} = \frac{1}{4} \cdot P_{in} \qquad Z_1 = 4 \cdot Z_0 = 120 \ \Omega \\ P_2 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_2} = \frac{3}{4} \cdot P_{in} \end{cases} \qquad \begin{aligned} Z_1 &= 4 \cdot Z_0 = 120 \ \Omega \\ Z_2 &= 4 \cdot Z_0 / 3 = 40 \ \Omega \end{aligned} \qquad \begin{aligned} &\text{Input match check} \\ Z_{in} &= 40 \ \Omega \parallel 120 \ \Omega = 30 \ \Omega \end{aligned} \end{split}$$

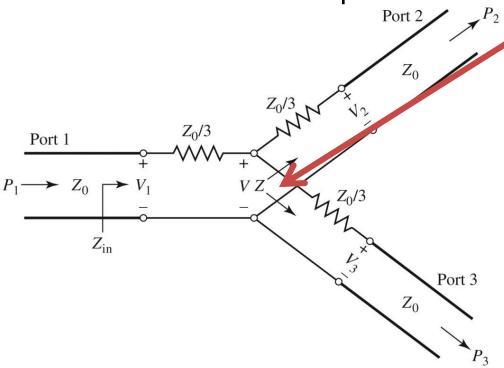
quarter-wave transformers $Z_c^i = \sqrt{Z_i \cdot Z_L}$

$$Z_c^1 = \sqrt{Z_1 \cdot Z_L} = \sqrt{120\Omega \cdot 30\Omega} = 60\Omega$$
 $Z_c^2 = \sqrt{Z_2 \cdot Z_L} = \sqrt{40\Omega \cdot 30\Omega} = 34.64\Omega$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be:
 - reciprocal

matched at all ports



The impedance Z, seen looking into the Zo/3 resistor followed by a terminated output line:

$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

The input line will be terminated with a Zo/3 resistor in series with two such lines Z in parallel

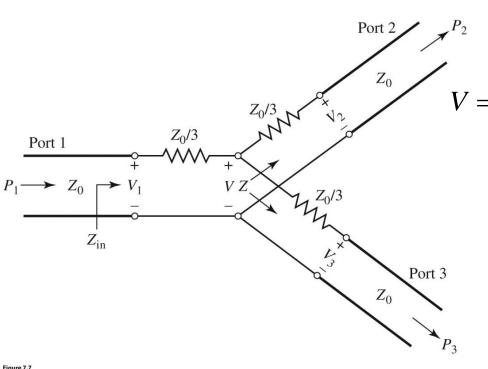
$$Z_{in} = \frac{Z_0}{3} + \frac{1}{2} \cdot \frac{4Z_0}{3} = Z_0$$

so it will be matched: $S_{11} = 0$

from symmetry:
$$S_{11} = S_{22} = S_{33} = 0$$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$



If the voltage at port 1 is V1, then by voltage division the voltage V at the junction is:

$$V = V_1 \cdot \frac{Z/2}{Z/2 + Z_0/3} = V_1 \cdot \frac{2Z_0/3}{2Z_0/3 + Z_0/3} = \frac{2}{3} \cdot V_1$$

The output voltages are, again by voltage division:

$$V_2 = V_3 = V \cdot \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4} \cdot V = \frac{1}{2} \cdot V_1$$

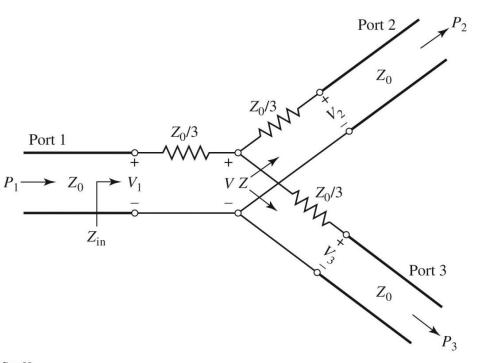
$$S_{21} = S_{31} = \frac{1}{2}$$

from symmetry: $S_{21} = S_{31} = S_{23} = \frac{1}{2}$

© John Wiley & Sons, Inc. All rights reserve

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal (S matrix is symmetrical) $S_{21} = S_{31} = S_{23} = \frac{1}{2}$
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$



S matrix:
$$[S] = \frac{1}{2} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Powers:
$$P_{in} = \frac{1}{2} \cdot \frac{V_1^2}{Z_0}$$

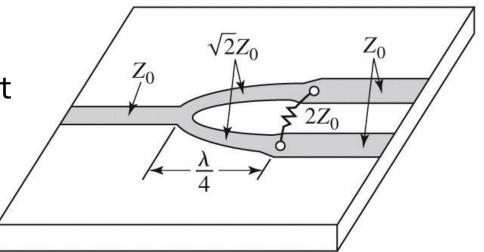
$$P_2 = P_3 = \frac{1}{2} \cdot \frac{(1/2V_1)^2}{Z_0} = \frac{1}{8} \cdot \frac{V_1^2}{Z_0} = \frac{1}{4} \cdot P_{in}$$

Half of the supplied power is dissipated in the 3 resistors. The output powers are 6 dB below the input power level

Figure 7.7

Solohn Wiley & Sons, Inc. All rights reserved.

- Previous power dividers suffer from a major drawback, there is not isolation between the two output ports $S_{23} = S_{32} \neq 0$
 - this requirement is important in some applications
- The Wilkinson power divider solves this problem
 - it also has the useful property of appearing lossless when the output ports are matched
 - only reflected power from the output ports is dissipated



- one input line
- two $\lambda/4$ transformers

one resistor between the output lines

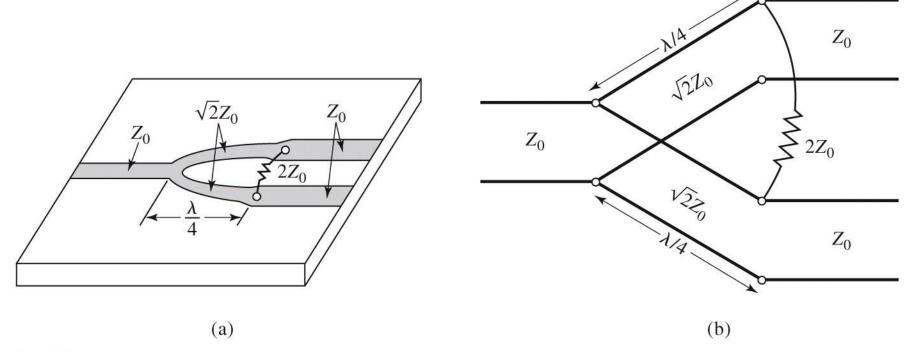
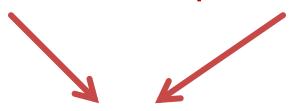


Figure 7.8 © John Wiley & Sons, Inc. All rights reserved.

Even/Odd Mode Analysis

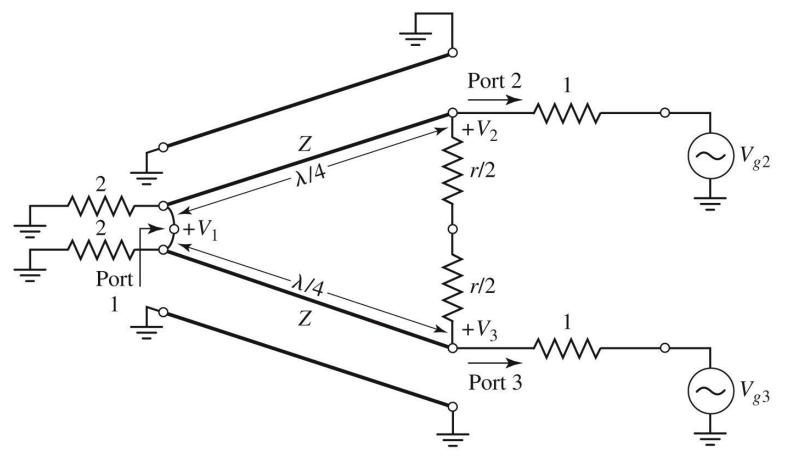
- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

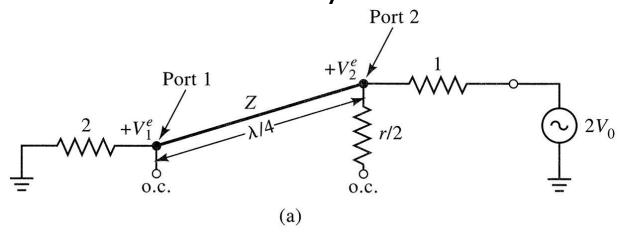


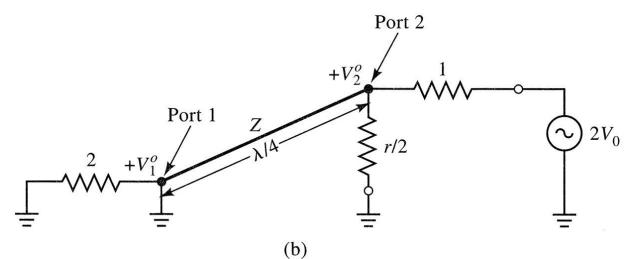
We can benefit from existing symmetries!!

the circuit in normalized and symmetric form

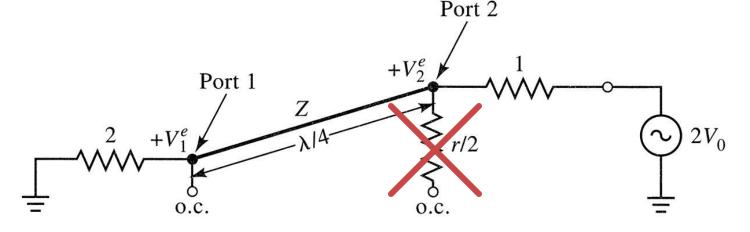


Even/Odd Mode Analysis





even mode, symmetry plane is open circuit



looking into port 2, $\lambda/4$ transformer with 2 load $Z_{in2}^e = \frac{Z^2}{2}$

if $Z = \sqrt{2}$ port 2 is matched $Z_{in2}^e = 1$

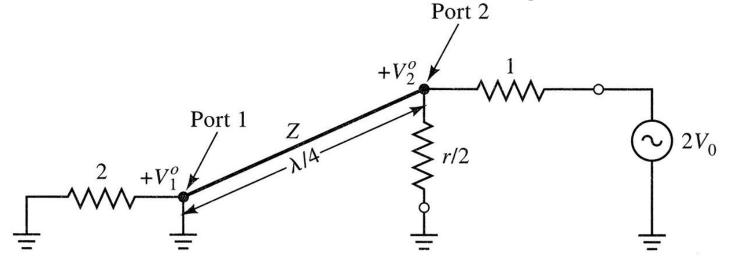
$$V(x) = V^{+} \cdot \left(e^{-j\beta \cdot x} + \Gamma \cdot e^{j\beta \cdot x}\right)^{2}$$
 x=0 at port 1 x=- λ /4 at port 2

$$V_{2}^{e} = V(-\lambda/4) = jV^{+} \cdot (1-\Gamma) = V_{0} \qquad V_{1}^{e} = V(0) = V^{+} \cdot (1+\Gamma) = jV_{0} \cdot \frac{\Gamma+1}{\Gamma-1}$$

 Γ : reflection coefficient seen at port 1 looking toward the resistor of normalized value 2 from the transformer $Z=\sqrt{2}$ $\Gamma=\frac{2-\sqrt{2}}{2+\sqrt{2}} \qquad V_1^e=-jV_0\sqrt{2}$

$$\Gamma = \frac{2 - \sqrt{2}}{2}$$

odd mode, symmetry plane is grounded



looking from port 2 the $\lambda/4$ line is shortcircuited, impedance seen from port 2 is ∞

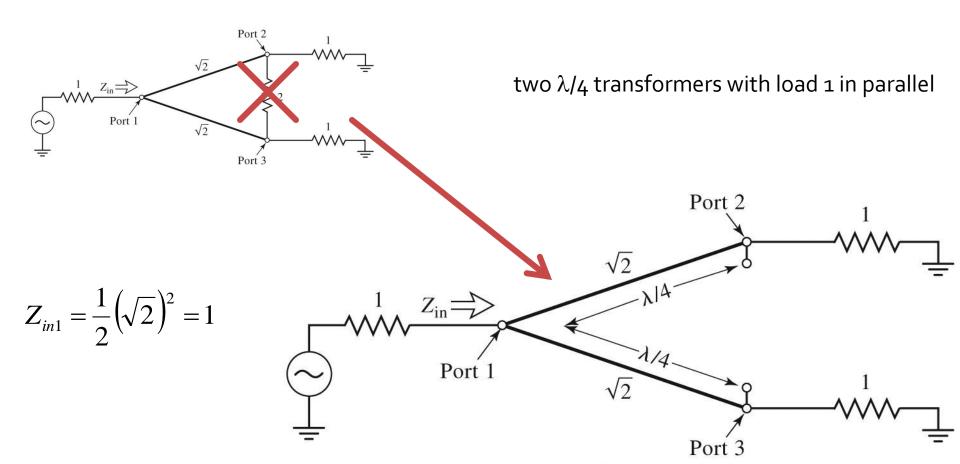
$$Z_{in2}^o = r/2$$

 $Z_{in2}^o = r/2$ if r=2 port 2 is matched

$$Z_{in2}^o = 1 \longrightarrow V_2^o = V_0$$

in the odd mode all the power is dissipated in the r/2 resistor

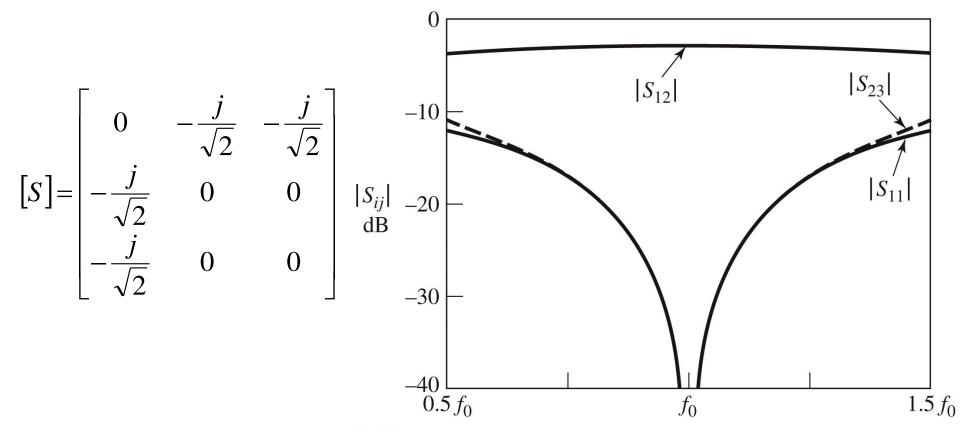
input impedance in port 1

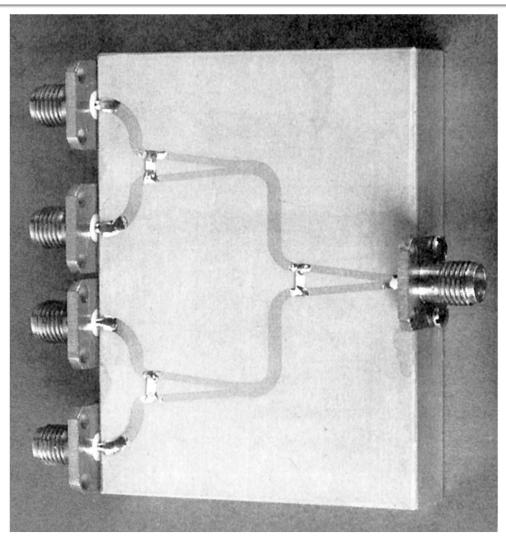


S parameters

$$\begin{split} Z_{_{in1}} &= \frac{1}{2} \Big(\sqrt{2} \, \Big)^2 = 1 & S_{_{11}} = 0 \\ Z_{_{in2}}^e &= 1 & Z_{_{in2}}^o = 1 & \text{and} & Z_{_{in3}}^e = 1 & Z_{_{in3}}^o = 1 \\ S_{_{12}} &= S_{_{21}} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = -\frac{j}{\sqrt{2}} \\ \text{and} & S_{_{13}} = S_{_{31}} = -\frac{j}{\sqrt{2}} \\ S_{_{23}} &= S_{_{32}} = 0 & \text{due to short or open at bisection, both eliminate transfer between the ports + reciprocal circuit} \end{split}$$

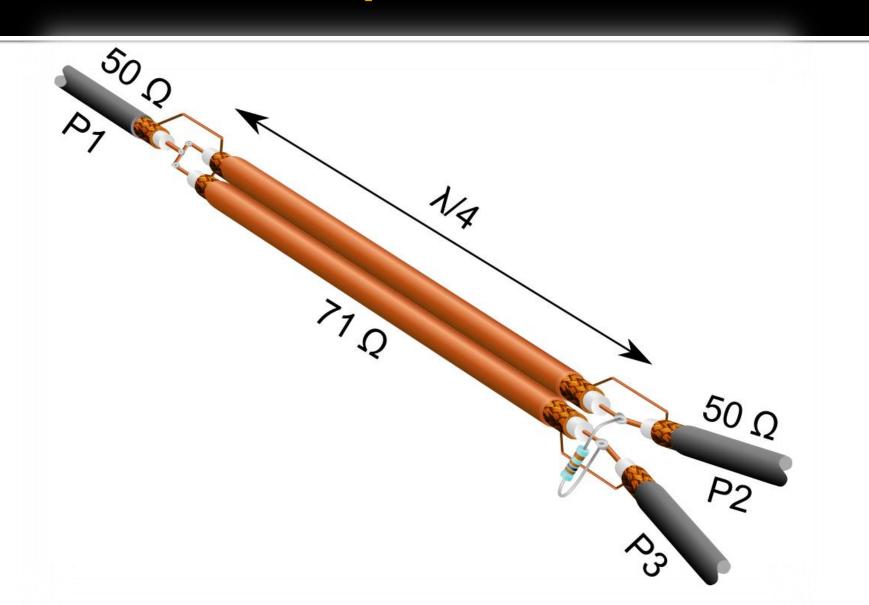
at design frequency (length of the transformer equal to $\lambda_o/4$) we have isolation between the two output ports





3 X Wilkinson = 4-way power divider

Figure 7.15
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.



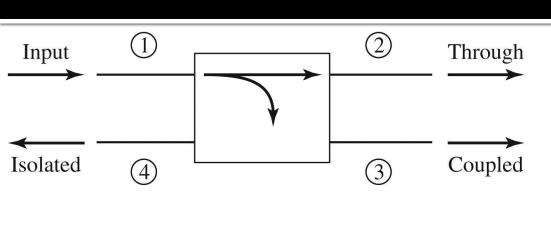
Directional couplers

Four-Port Networks

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - lossless
- is always directional
 - the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

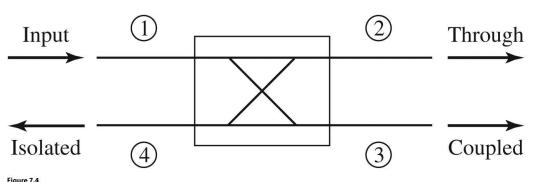
Directional Coupler



$$|S_{12}|^2 = \alpha^2 = 1 - \beta^2$$

$$\left|S_{13}\right|^2 = \beta^2$$

Coupling



© John Wiley & Sons, Inc. All rights reserved.

$$C = 10\log\frac{P_1}{P_3} = -20\cdot\log(\beta)[dB]$$

Directivity

$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) [dB]$$

Isolation

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

$$I = D + C , [dB]$$

Four-Port Networks

- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

• An Antisymmetric Coupler $\theta = 0, \phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

Hybrid Couplers

Hybrid Couplers are directional couplers with 3 dB coupling factor

$$\alpha = \beta = 1/\sqrt{2}$$

The cuadrature (90°) hybrid

$$(\theta = \phi = \pi/2)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

The 180° ring hybrid (rat-race)

$$(\theta = 0, \phi = \pi)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{vmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{vmatrix}$$

The cuadrature (90°) hybrid

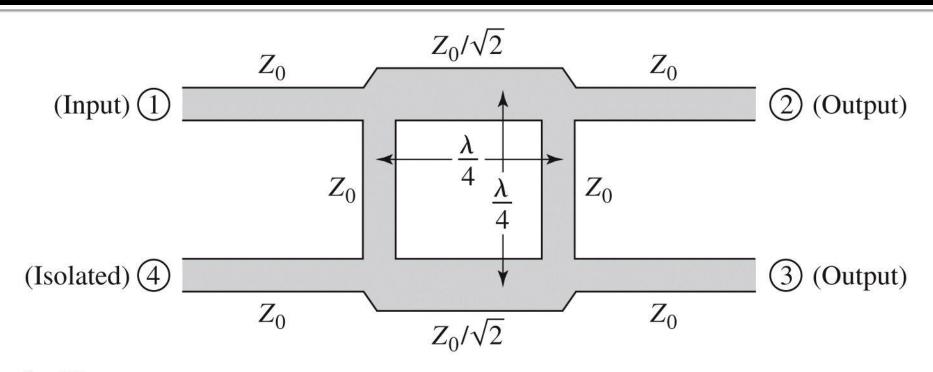
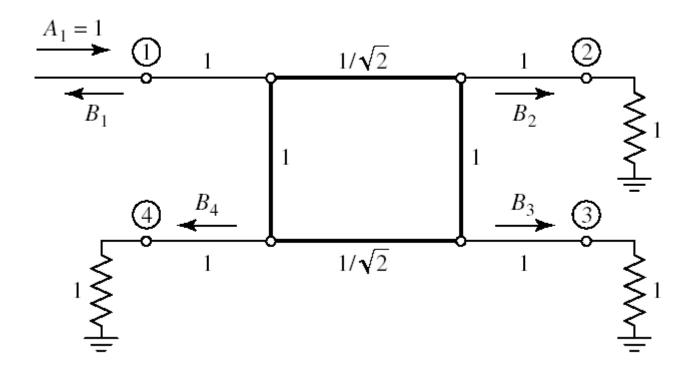


Figure 7.21

© John Wiley & Sons, Inc. All rights reserved.

$$[S] = \frac{-1}{\sqrt{2}} \begin{vmatrix} 0 & j & 1 & 0 \\ j & 0 & 0 & 1 \\ 1 & 0 & 0 & j \\ 0 & 1 & j & 0 \end{vmatrix}$$

Even/Odd Mode Analysis



Even/Odd Mode Analysis

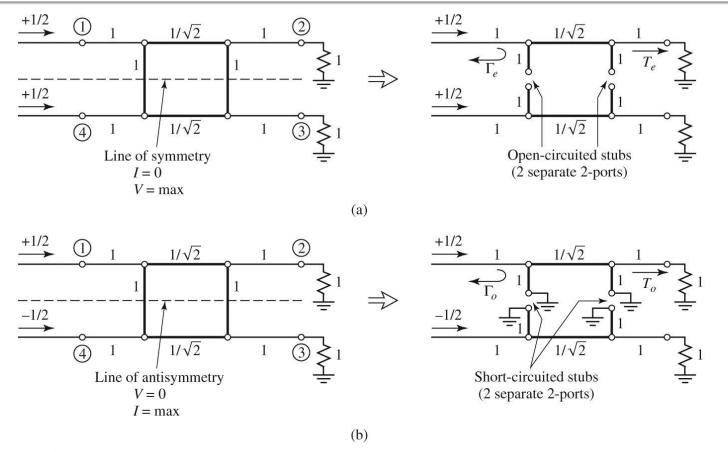


Figure 7.23 © John Wiley & Sons, Inc. All rights reserved.

$$b_1 = \frac{1}{2}\Gamma_e + \frac{1}{2}\Gamma_o$$
 $b_2 = \frac{1}{2}T_e + \frac{1}{2}T_o$

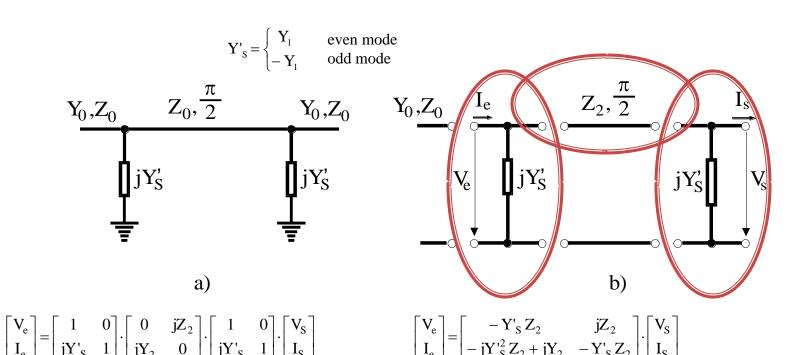
$$b_3 = \frac{1}{2}T_e - \frac{1}{2}T_o$$
 $b_4 = \frac{1}{2}\Gamma_e - \frac{1}{2}\Gamma_o$

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD Parameters	
	A = 1	B = Z
	C = 0	D = 1
Y	A = 1	B = 0
	C = Y	D = 1
	$A = \cos \beta \ell$	$B = jZ_0 \sin \beta \ell$
Z_0 , β	$C = jY_0 \sin \beta \ell$	$D = \cos \beta \ell$

S parameters (from ABCD)



$$S_{11} = \frac{j\frac{Z_{2}}{Z_{0}} - Z_{0} \left(-jY_{S}^{2}Z_{2} + jY_{2}\right)}{-2Y_{S}^{2}Z_{2} + j\frac{Z_{2}}{Z_{0}} + Z_{0} \left(-jY_{S}^{2}Z_{2} + jY_{2}\right)}$$

$$S_{12} = \frac{2\left[\left(-Y_{S}^{2}Z_{2}\right)^{2} - jZ_{2}\left(-jY_{S}^{2}Z_{2} + jY_{2}\right)\right]}{-2Y_{S}^{2}Z_{2} + j\frac{Z_{2}}{Z_{0}} + Z_{0}\left(-jY_{S}^{2}Z_{2} + jY_{2}\right)}$$

$$\Gamma = S_{11} = \frac{j\left(z_{2} - y_{2} + y_{S}^{2}Z_{2}\right)}{-2y_{S}^{2}Z_{2} + j\left(z_{2} + y_{2} - y_{S}^{2}Z_{2}\right)} = S_{22}$$

$$\Gamma = S_{11} = \frac{j\left(z_2 - y_2 + y_S^2 z_2\right)}{-2y_S^2 z_2 + j\left(z_2 + y_2 - y_S^2 z_2\right)} = S_{22}$$

$$S_{21} = \frac{2}{-2Y'_S Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)} S_{22} = \frac{j\frac{Z_2}{Z_0} - Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)}{-2Y'_S Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)} T = S_{21} = \frac{2}{-2y'_S Z_2 + j \left(z_2 + y_2 - y'_S^2 Z_2\right)} = S_{12}$$

Relation between two port S parameters

$$A = \sqrt{\frac{Z_{01}}{Z_{02}}} \frac{\left(1 + S_{11} - S_{22} - \Delta S\right)}{2S_{21}}$$

$$B = \sqrt{Z_{01}Z_{02}} \frac{\left(1 + S_{11} + S_{22} + \Delta S\right)}{2S_{21}}$$

$$C = \frac{1}{\sqrt{Z_{01}Z_{02}}} \frac{1 - S_{11} - S_{22} + \Delta S}{2S_{21}}$$

$$D = \sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1 - S_{11} + S_{22} - \Delta S}{2S_{21}}$$

$$\Delta S = S_{11} S_{22} - S_{12} S_{21}$$

$$S_{11} = \frac{AZ_{02} + B - CZ_{01}Z_{02} - DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$S_{12} = \frac{2(AD - BC)\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$S_{21} = \frac{2\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$S_{22} = \frac{-AZ_{02} + B - CZ_{01}Z_{02} + DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

Matching and coupling factor

$$\Gamma_e = \frac{j \cdot (z_2 - y_2 + y_1^2 z_2)}{-2y_1 z_2 + j(z_2 + y_2 - y_1^2 z_2)}$$

$$\Gamma_o = \frac{j \cdot (z_2 - y_2 + y_1^2 z_2)}{2y_1 z_2 + j(z_2 + y_2 - y_1^2 z_2)}$$

$$T_e = \frac{2}{-2y_1 z_2 + j \cdot (z_2 + y_2 - y_1^2 z_2)}$$

$$T_o = \frac{2}{2y_1 z_2 + j \cdot (z_2 + y_2 - y_1^2 z_2)}$$

$$b_1 = 0 \Rightarrow z_2 - y_2 + y_1^2 z_2 = 0 \Rightarrow z_2^2 = \frac{1}{1 + y_1^2}$$

$$b_1 = 0$$
 $b_4 = 0$ $b_3 = -y_1 z_2$ $b_2 = -j z_2$

$$y_2^2 = 1 + y_1^2$$

$$b_3 = -\frac{\sqrt{y_2^2 - 1}}{y_2}$$
, $b_2 = -\frac{j}{y_2}$

$$b_{1} = \frac{\Gamma_{e} + \Gamma_{o}}{2} = \frac{z_{2}^{2} - (y_{2} - y_{1}^{2} z_{2})^{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{2} = \frac{T_{e} + T_{o}}{2} = \frac{-2j(z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{3} = \frac{T_{e} - T_{o}}{2} = \frac{-4y_{1}z_{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{4} = \frac{\Gamma_{e} - \Gamma_{o}}{2} = \frac{-2jy_{1}z_{2}(z_{2} - y_{2} + y_{1}^{2} z_{2})}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$C = 10\log\frac{P_{1}}{P_{2}} = -20\log|b_{3}|, dB$$

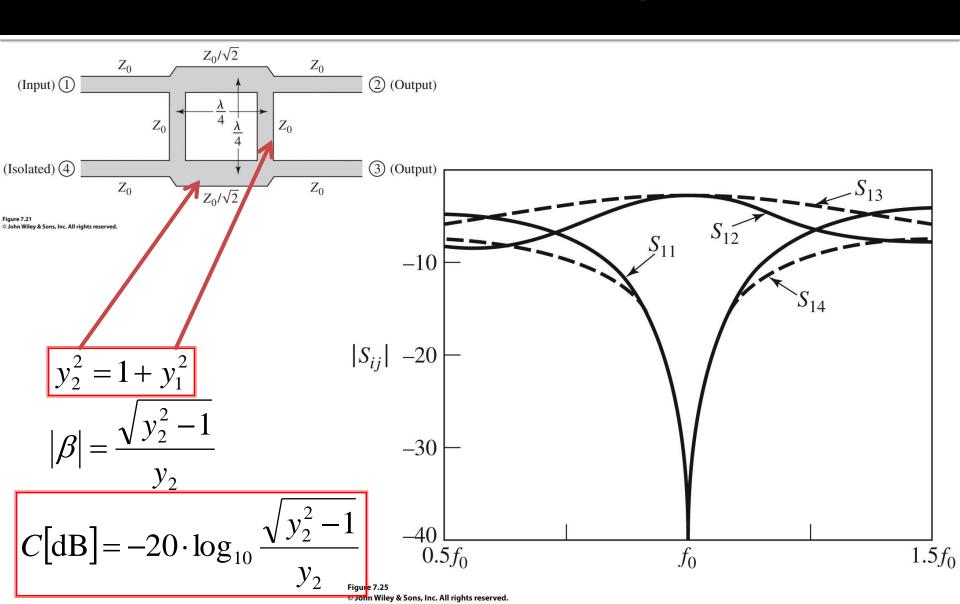
$$\beta = \frac{\sqrt{y_2^2 - 1}}{y_2}$$

$$b_3 = -C$$

$$b_2 = -j\sqrt{1 - C^2}$$

$$[S] = \begin{bmatrix} 0 & -j\sqrt{1-C^2} & -C & 0\\ -j\sqrt{1-C^2} & 0 & 0 & -C\\ -C & 0 & 0 & -j\sqrt{1-C^2}\\ 0 & -C & -j\sqrt{1-C^2} & 0 \end{bmatrix}$$

The cuadrature (90°) hybrid



Example

Design a cuadrature (90°) hybrid working on 50 Ω , and plot the S parameters between

 $0.5f_0$ and $1.5f_0$, where f_0

is the frequency at which the length of the branches is $\lambda/4$

Solution

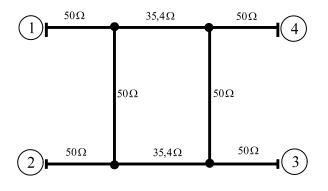
A cuadrature (90°) hybrid has C = 3dB, then $\beta = 1/\sqrt{2}$

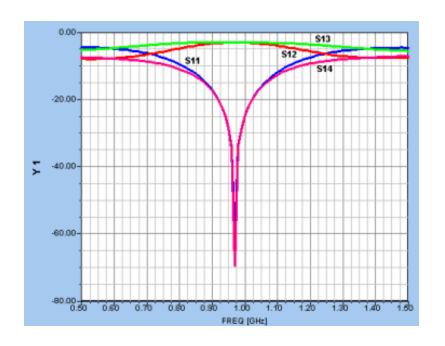
$$y_2 = \sqrt{2}$$
 and $y_1 = 1$

$$Z_0 = 50\Omega$$

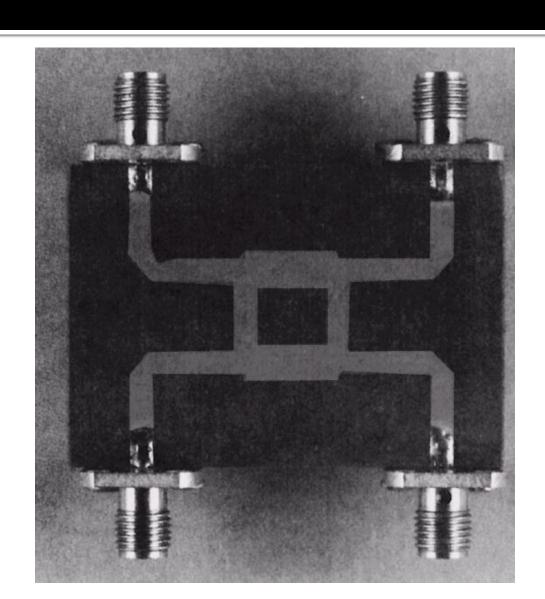
the characteristic impedances will be:

$$Z_1 = Z_0 = 50\Omega$$
 $Z_2 = \frac{Z_0}{\sqrt{2}} = 35.4\Omega$





The cuadrature (90°) hybrid



The cuadrature (90°) hybrid

 eight-way microstrip power divider with six quadrature hybrids in a Bailey configuration

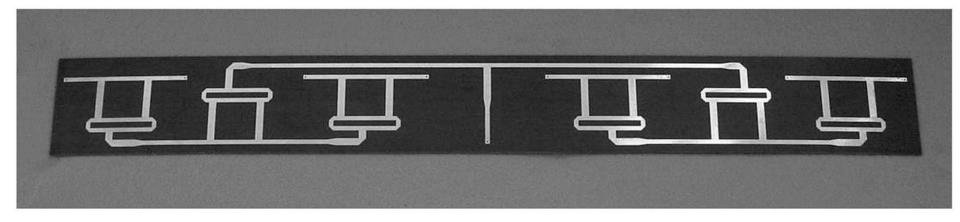
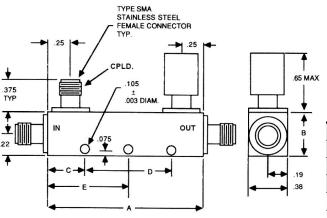


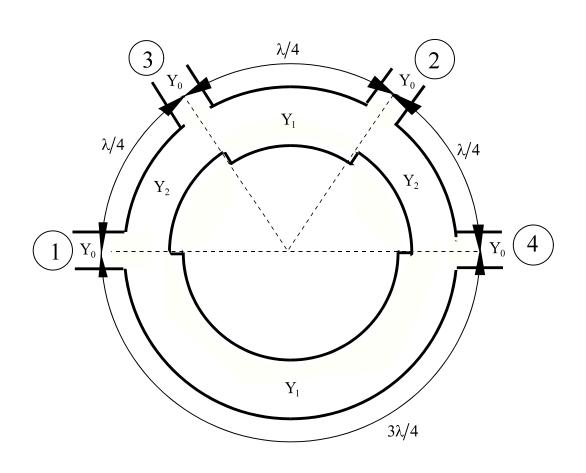
Figure 7.24
Courtesy of ProSensing, Inc., Amherst, Mass.

Datasheet

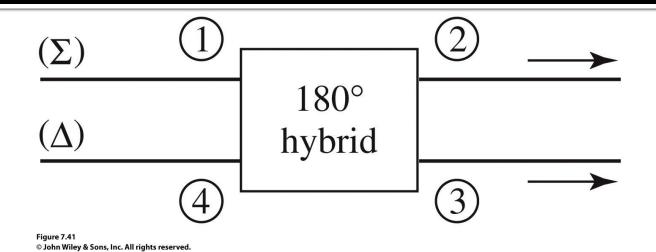


Model No.	Frequency Range (Ghz)	Coupling † (dB)	Freq. Sens. (dB)	Insertion Loss (dB)		- Directivity	VSWR max.	
				Excl. Cpld Pwr	True	(dB min.)	Primary Line	Secondary Line
MDC6223-6	0.5-1.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6223-10	0.5-1.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6223-20	0.5-1.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6223-30	0.5-1.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-6	1.0-2.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6224-10	1.0-2.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6224-20	1.0-2.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-30	1.0-2.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6225-6	2.0-4.0	6 ±1.00	±0.60	0.20	1.80	22	1.15	1.15
MDC6225-10	2.0-4.0	10 ±1.25	±0.75	0.20	0.80	22	1.15	1.15
MDC6225-20	2.0-4.0	20 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6225-30	2.0-4.0	30 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6266-6	2.6-5.2	6 ±1.00	±0.60	0.20	1.80	20	1.25	1.25
MDC6266-10	2.6-5.2	10 ±1.25	±0.75	0.20	0.80	20	1.25	1.25
MDC6266-20	2.6-5.2	20 ±1.25	±0.75	0.20	0.25	20	1.25	1.25
MDC6266-30	2.6-5.2	30 ±1.25	±0.75	0.20	0.20	20	1.25	1.25
MDC6226-6	4.0-8.0	6 ±1.00	±0.60	0.25	1.90	20	1.25	1.25
MDC6226-10	4.0-8.0	10 ±1.25	±0.75	0.25	0.90	20	1.25	1.25
MDC6226-20	4.0-8.0	20 ±1.25	±0.75	0.25	0.30	20	1.25	1.25
MDC6226-30	4.0-8.0	30 ±1.25	±0.75	0.25	0.25	20	1.25	1.25
MDC6227-6	7.0-12.4	6 ±1.00	±0.50	0.30	2.00	17	1.30	1.30
MDC6227-10	7.0-12.4	10 ±1.00	±0.50	0.30	1.00	17	1.30	1.30
MDC6227-20	7.0-12.4	20 ±1.00	±0.50	0.30	0.35	17	1.30	1.30
11000007.00	70404	00 400	2.52	2.00	0.00		4.00	Tile 7 Blok 7k

The 180° ring hybrid (rat-race)

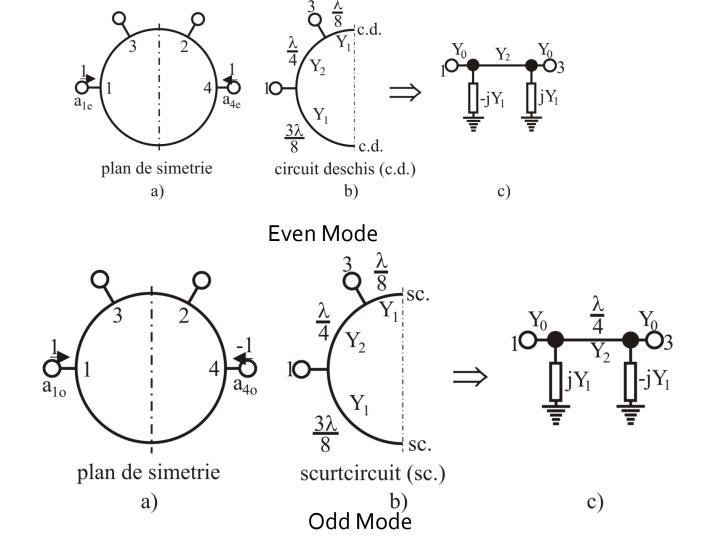


The 180° ring hybrid



- The 180° ring hybrid can be operated in different modes:
 - a signal applied to port 1 will be evenly split into two in-phase components at ports 2 and 3
 - input applied to port 4 it will be equally split into two components with a 180° phase difference at ports 2 and 3
 - input signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will be formed at port 4 (power combiner)

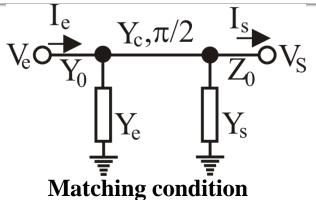
Even/Odd Mode Analysis



Even/Odd Mode Analysis

$$S_{11} = \frac{jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) - jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$



$$S_{21} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{22} = \frac{-jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) + jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

Even mode:

$$y_e = -jy_1$$
$$y_s = jy_1$$

$$y_1^2 + y_2^2 = 1$$

$$[S] = \begin{bmatrix} 0 & 0 & -jy_2 & jy_1 \\ 0 & 0 & -jy_1 & -jy_2 \\ -jy_2 & -jy_1 & 0 & 0 \\ jy_1 & -jy_2 & 0 & 0 \end{bmatrix}$$

Odd mode:

$$\begin{aligned} y_e &= jy_1 \\ y_s &= -jy_1 \\ S_{11o} &= \frac{z_2 - y_2 - y_1^2 z_2 - 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2} \\ S_{12o} &= S_{21o} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2} \\ S_{22o} &= \frac{z_2 - y_2 - y_1^2 z_2 + 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2} \end{aligned}$$

$$S_{11e} = \frac{z_2 - y_2 - y_1^2 z_2 + 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{12e} = S_{21e} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{22e} = \frac{z_2 - y_2 - y_1^2 z_2 - 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

The 180° ring hybrid



$$[S] = \begin{bmatrix} 0 & -jy_2 & -jy_1 & 0 \\ -jy_2 & 0 & 0 & jy_1 \\ -jy_1 & 0 & 0 & -jy_2 \\ 0 & jy_1 & -jy_2 & 0 \end{bmatrix} = -j \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

$$C(dB) = -20\log(\beta) = -20\log(y_1)$$

Example

Design a ring (180°) hybrid working on 50 Ω , and plot the S parameters between 0.5 and 1.5 of the design frequency.

$$C[dB] = -20\log(y_1)$$

$$\sqrt{2}Z_0 = 70.7\Omega$$

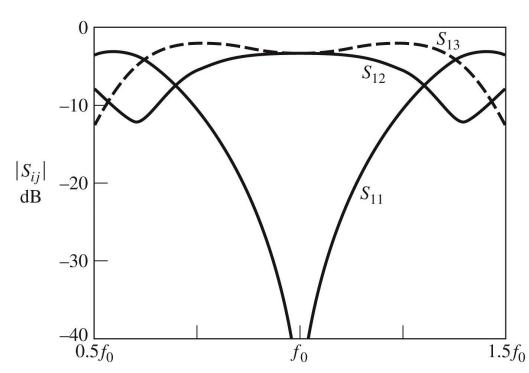


Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

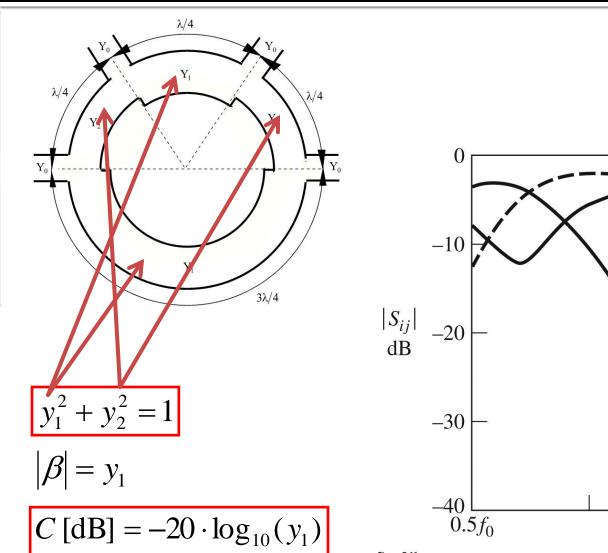




Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

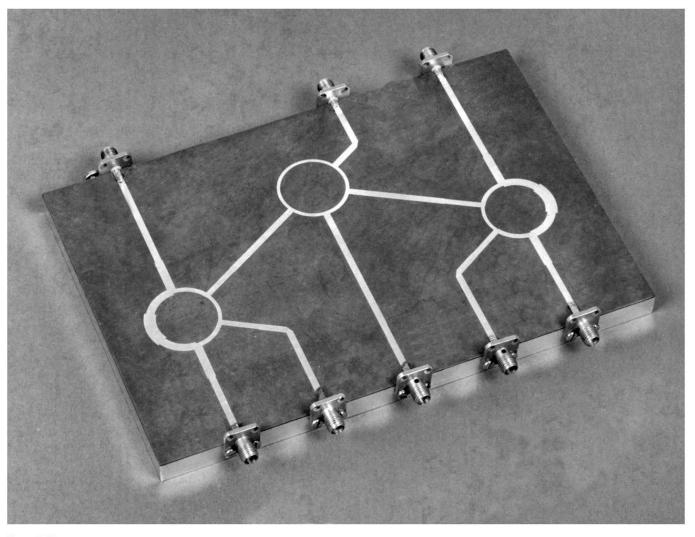
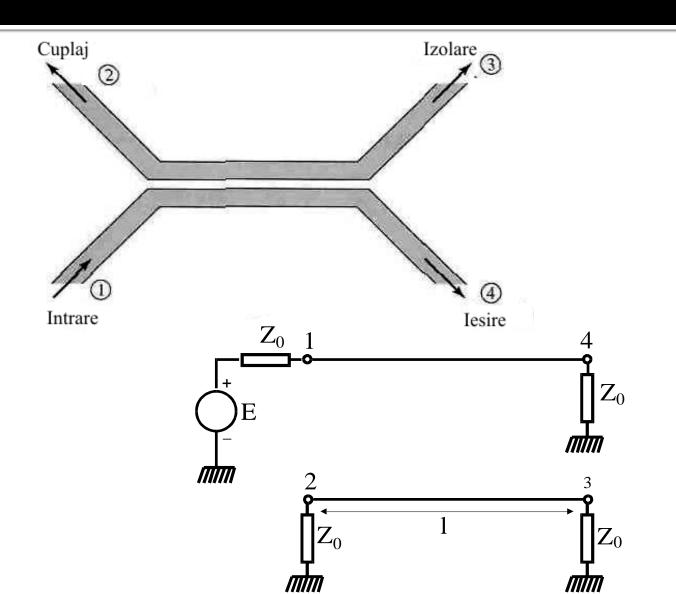
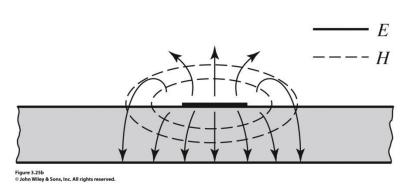


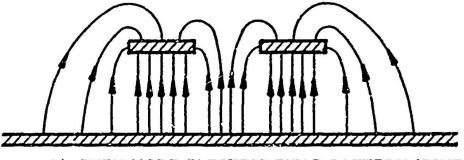
Figure 7.43 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler



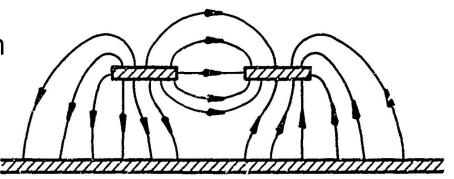
Coupled Lines





b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

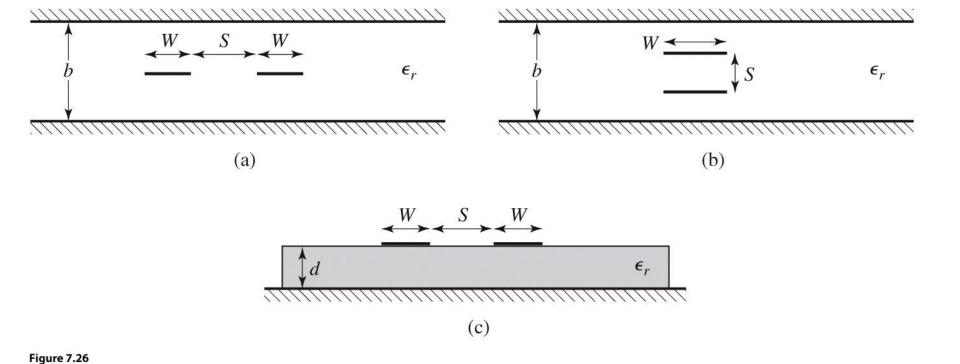
- Even mode characterizes the common mode signal on the two lines
- Odd mode characterizes the differential mode signal between the two lines
- Each of the two modes is characterized by different characteristic impedances



c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

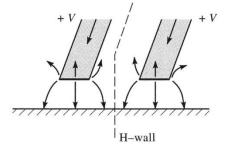
Coupled Lines

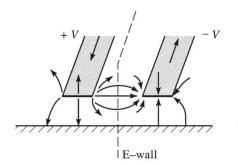
O John Wiley & Sons, Inc. All rights reserved.

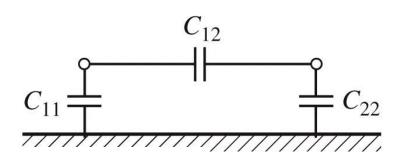


Coupled Lines

Figure 7.27 © John Wiley & Sons, Inc. All rights r



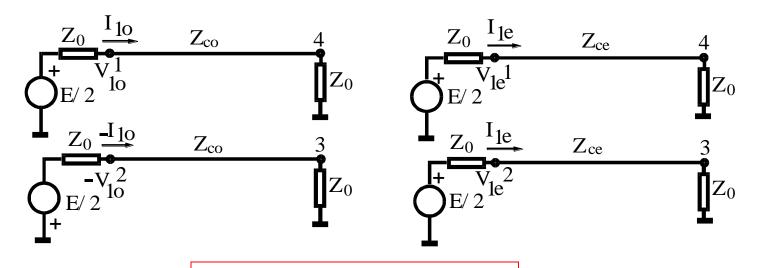




$$c_{11} = c_{22}$$

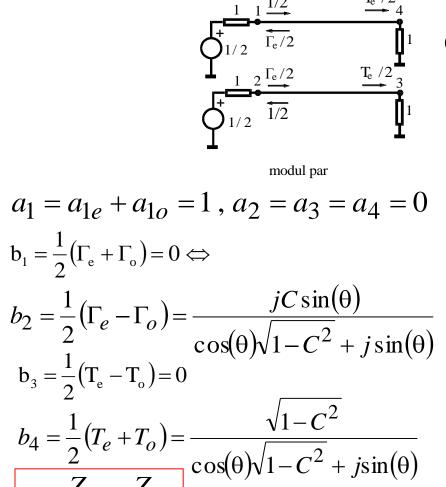
(a)

Matching in Coupled Line Coupler



$$\begin{cases} Z_{ce} Z_{co} = Z_0^2 \\ \theta_e = \theta_o \end{cases}$$

Directivity and Coupling factor



modul impar

$$b_{3} = \frac{1}{2} (T_{e} - T_{o}) = 0$$

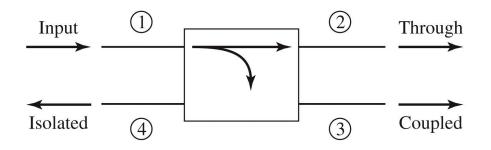
$$b_{4} = \frac{1}{2} (T_{e} + T_{o}) = \frac{\sqrt{1 - C^{2}}}{\cos(\theta) \sqrt{1 - C^{2}} + j\sin(\theta)}$$

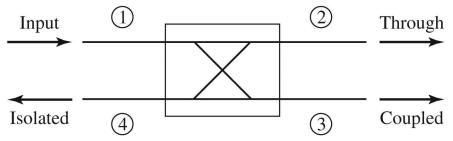
$$C = \frac{Z_{ce} - Z_{co}}{Z_{ce} + Z_{co}}$$

$$S = \begin{bmatrix} 0 & C & 0 & -j\sqrt{1 - C^{2}} \\ C & 0 & -j\sqrt{1 - C^{2}} & 0 \\ 0 & -j\sqrt{1 - C^{2}} & 0 & C \\ -j\sqrt{1 - C^{2}} & 0 & C & 0 \end{bmatrix}$$

 $\theta = \pi/2$

Coupled Line Coupler





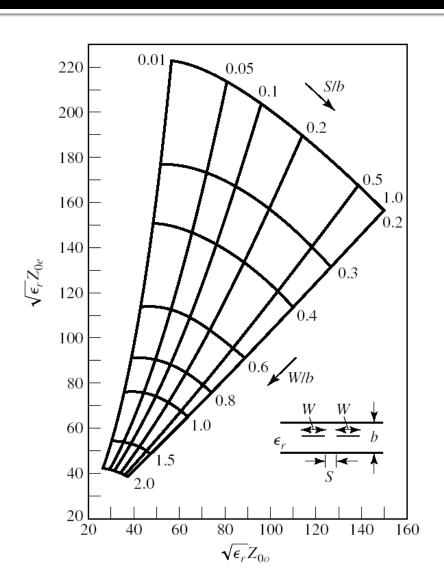
© John Wiley & Sons, Inc. All rights reserved.

$$[S] = -j \cdot \begin{bmatrix} 0 & \sqrt{1 - C^2} & jC & 0 \\ \sqrt{1 - C^2} & 0 & 0 & jC \\ jC & 0 & 0 & \sqrt{1 - C^2} \\ 0 & jC & \sqrt{1 - C^2} & 0 \end{bmatrix}$$

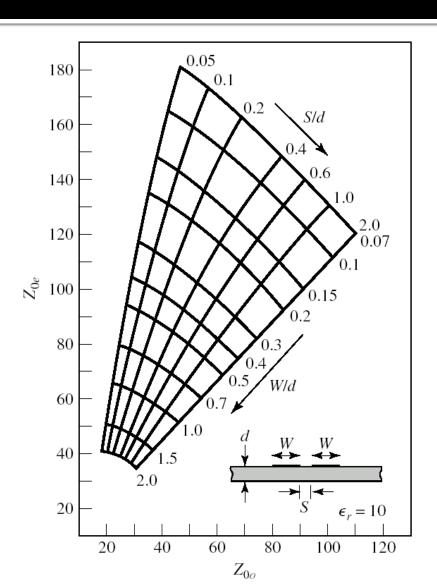
$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

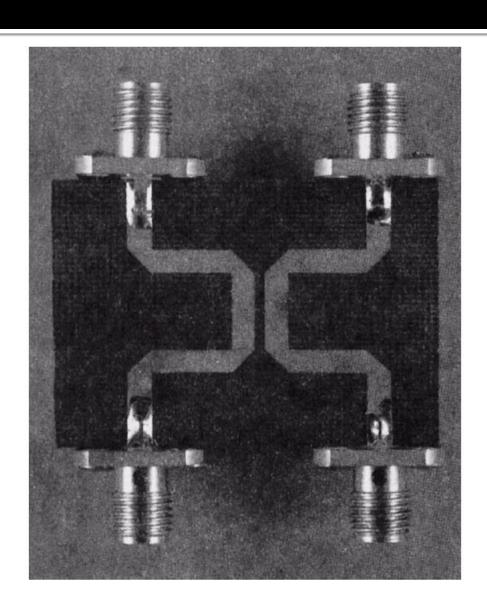
Normalized even- and odd-mode characteristic impedance design data for edge-coupled striplines.



Even- and odd-mode characteristic impedance design data for coupled microstrip lines on a substrate with $\varepsilon_r = 10$.



Coupled Line Coupler



Coupled Line Coupler

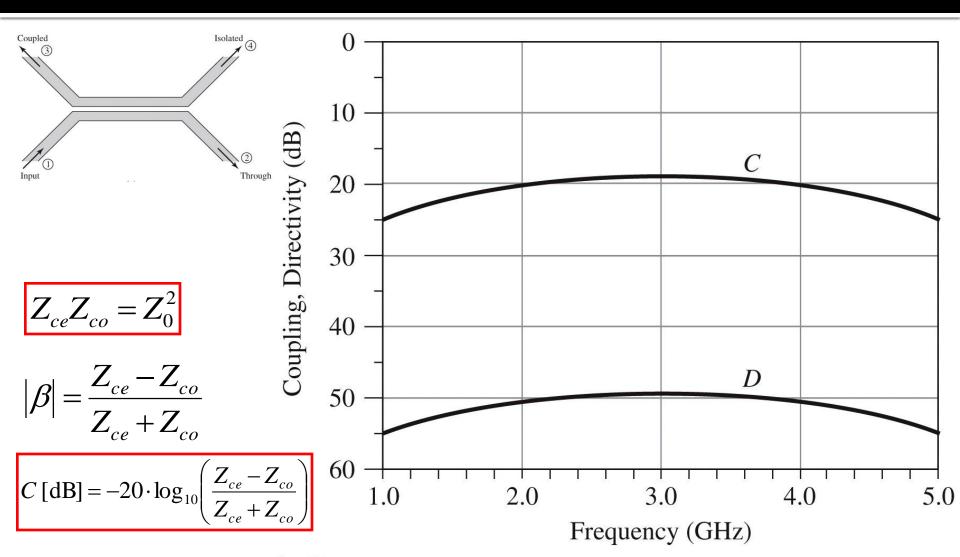


Figure 7.34

© John Wiley & Sons, Inc. All rights reserved.

Example

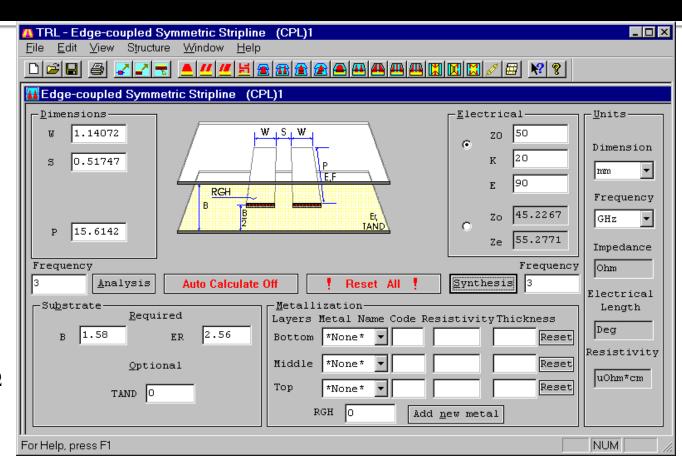
Design a coupled line coupler with 20 dB coupling factor, using stripline technology, with a distance between ground planes of 0.158 cm and an electrical permittivity of 2.56, working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz.

Solution

$$C = 10^{-20/20} = 0.1$$

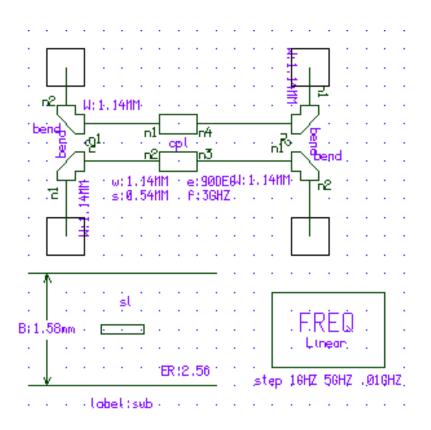
$$Z_{co} = 50\sqrt{\frac{0.9}{1.1}} = 45.23\Omega$$

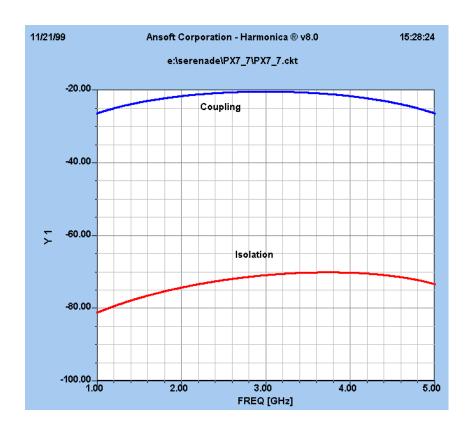
$$Z_{ce} = 50\sqrt{\frac{1.1}{0.9}} = 55.28\Omega$$



$$Z_{ce} = Z_0 \sqrt{\frac{1+C}{1-C}}, Z_{co} = Z_0 \sqrt{\frac{1-C}{1+C}}$$

Simulation





Multisection Coupled Line Couplers

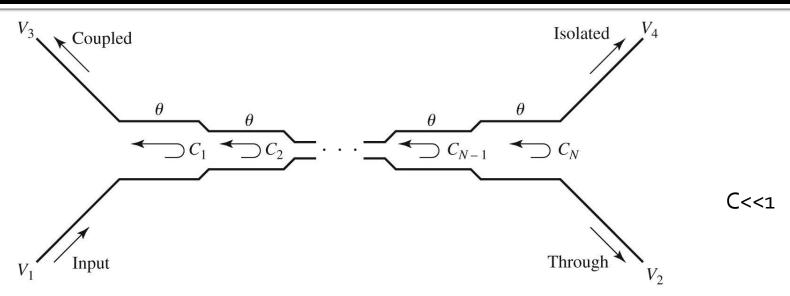


Figure 7.35 © John Wiley & Sons, Inc. All rights reserved.

$$\frac{V_3}{V_1} = b_3 = \frac{jC\sin\theta}{\cos\theta\sqrt{1 - C^2} + j\sin\theta} = \frac{jCtg\theta}{\sqrt{1 - C^2} + jtg\theta} \approx \frac{jCtg\theta}{1 + jtg\theta} = jC\sin\theta e^{-j\theta}$$

$$\frac{V_2}{V_1} = b_2 = \frac{\sqrt{1 - C^2}}{\cos \theta \sqrt{1 - C^2} + j\sin \theta} \approx \frac{1}{\cos \theta + j\sin \theta} = e^{-j\theta}$$

$$C = \frac{V_3}{V_1} = 2j\sin\theta e^{-j\theta} e^{-j(N-1)\theta} \left[C_1 \cos(N-1)\theta + C_2 \cos(N-3)\theta + ... + \frac{1}{2}C_{\frac{N+1}{2}} \right]$$

Example

Design a three sections coupled line coupler with 20 dB coupling factor, binomial characteristic (maximum flat), working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz

Solution

$$\frac{d^n}{d\theta^n} C(\theta) \bigg|_{\theta=\pi/2} = 0, n = 1,2$$

$$C = \left| \frac{V_3}{V_1} \right| = 2\sin\theta \left[C_1\cos 2\theta + \frac{1}{2}C_2 \right] = C_1(\sin 3\theta - \sin \theta) + C_2\sin\theta$$

$$\frac{dC}{d\theta} = \left[3C_1\cos 3\theta + (C_2 - C_1)\cos \theta\right]\Big|_{\theta = \pi/2} = 0$$

$$\frac{d^2C}{d\theta^2} = \left[-9C_1 \sin 3\theta - (C_2 - C_1)\sin \theta \right] \Big|_{\theta = \pi/2} = 10C_1 - C_2 = 0$$

$$\begin{cases} C_2 - 2C_1 = 0.1 \\ 10C_1 - C_2 = 0 \end{cases}$$

$$\begin{cases} C_1 = C_3 = 0.0125 \\ C_2 = 0.125 \end{cases}$$

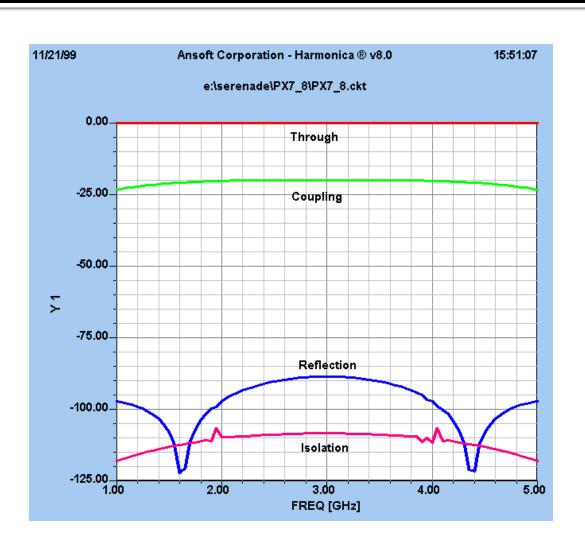
$$Z_{0e}^1 = Z_{0e}^3 = 50\sqrt{\frac{1.0125}{0.9875}} = 50.63\Omega$$

$$Z_{0o}^{1} = Z_{0o}^{3} = 50\sqrt{\frac{0.9875}{1.0125}} = 49.38\Omega$$

$$Z_{0e}^2 = 50\sqrt{\frac{1.125}{0.875}} = 56.69\Omega$$

$$Z_{0o}^2 = 50\sqrt{\frac{0.875}{1.125}} = 44.10\Omega$$

Simulare



The Lange Coupler

allows achieving coupling factors of 3 or 6 dB

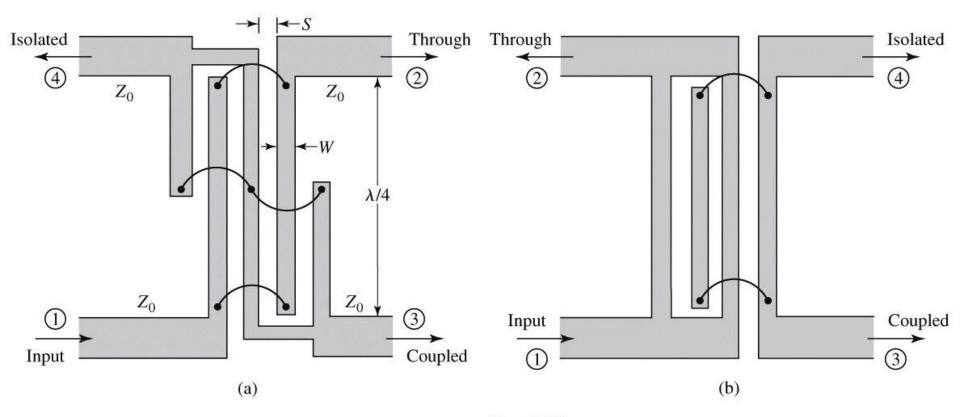


Figure 7.38 © John Wiley & Sons, Inc. All rights reserved.

The Lange Coupler

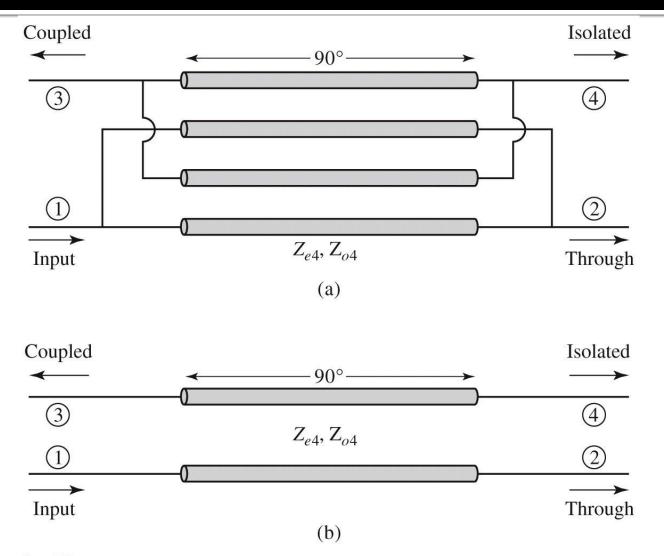


Figure 7.39
© John Wiley & Sons, Inc. All rights reserved.

Circuit model

$$C_{in} = C_{ex} - \frac{C_{ex}C_{m}}{C_{ex} + C_{m}}$$

$$C_{ex} = C_{ex} + C_{in}$$

$$Z_{o4} = \frac{1}{vC_{o4}}$$

$$C_{e4} = \frac{C_e \left(3C_e + C_o\right)}{C_e + C_o}$$

$$C_{o4} = \frac{C_o \left(3C_o + C_e\right)}{C_e + C_o}$$

$$Z_{e4} = Z_{0e} \frac{Z_{0e} + Z_{0o}}{3Z_{0o} + Z_{0e}}$$

$$Z_{o4} = Z_{0o} \frac{Z_{0e} + Z_{0o}}{3Z_{0e} + Z_{0o}}$$

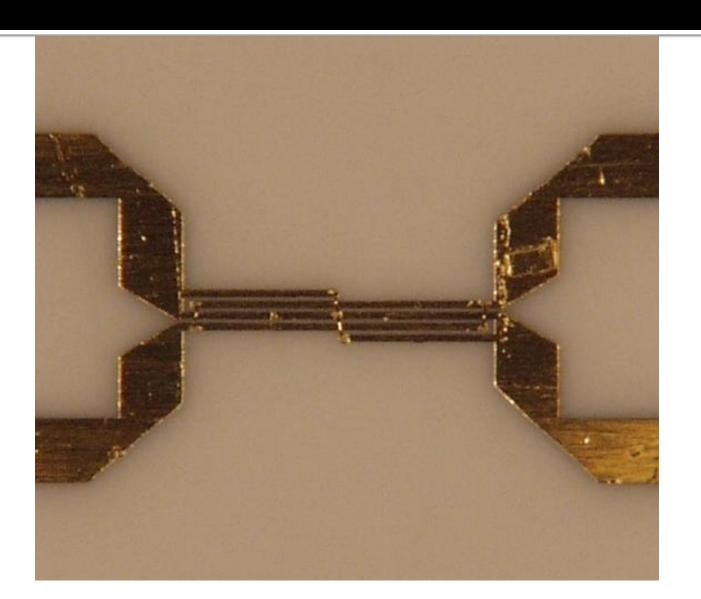
$$Z_0 = \sqrt{Z_{e4}Z_{o4}} = \sqrt{\frac{Z_{0e}Z_{0o}(Z_{0o} + Z_{0e})^2}{(3Z_{0o} + Z_{0e})(3Z_{0e} + Z_{0o})}}$$

$$C = \frac{Z_{e4} - Z_{o4}}{Z_{e4} + Z_{o4}} = \frac{3(Z_{0e}^2 - Z_{0o}^2)}{3(Z_{0e}^2 + Z_{0o}^2) + 2Z_{0e}Z_{0o}}$$

$$Z_{0e} = \frac{4C - 3 + \sqrt{9 - 8C^2}}{2C\sqrt{(1 - C)/(1 + C)}} Z_0$$

$$Z_{0o} = \frac{4C + 3 - \sqrt{9 - 8C^2}}{2C\sqrt{(1+C)/(1-C)}}Z_0$$

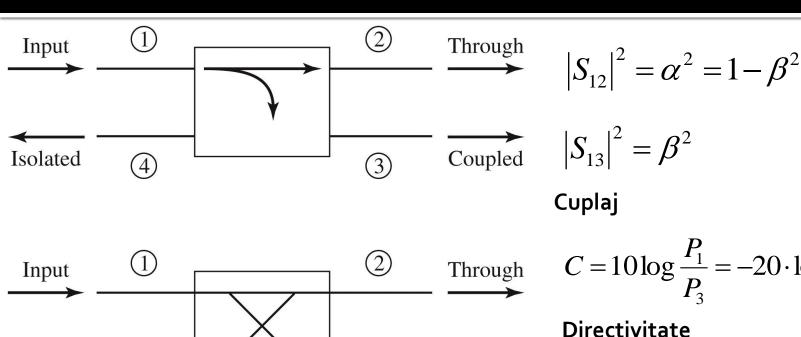
The Lange Coupler



Directional Couplers

Laboratory no. 2

Directional Coupler



3)

© John Wiley & Sons, Inc. All rights reserved.

4

Isolated

$$I = D + C$$
, dB

$$C = 10\log\frac{P_1}{P_3} = -20\cdot\log(\beta)[dB]$$

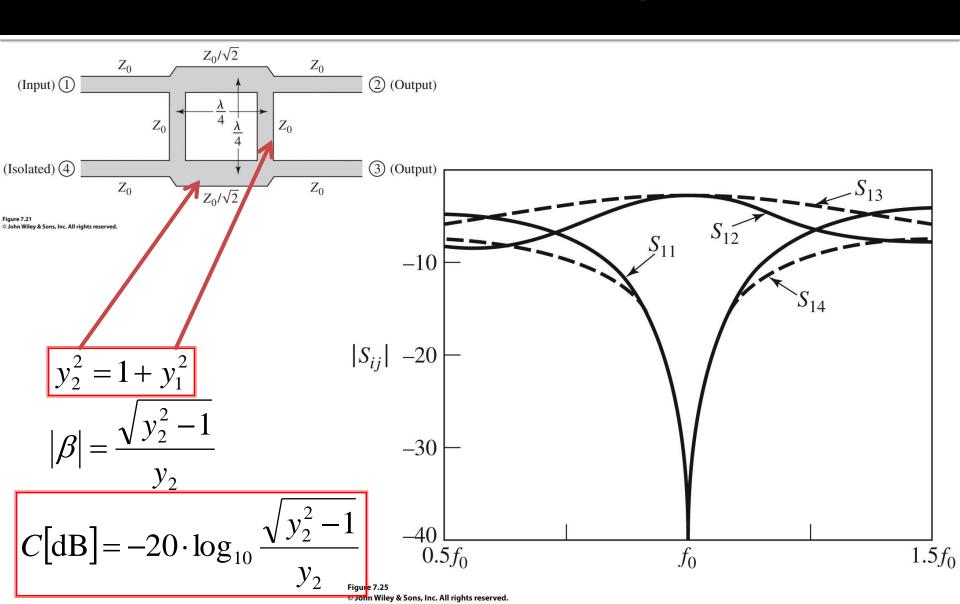
$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) \text{[dB]}$$

Izolare

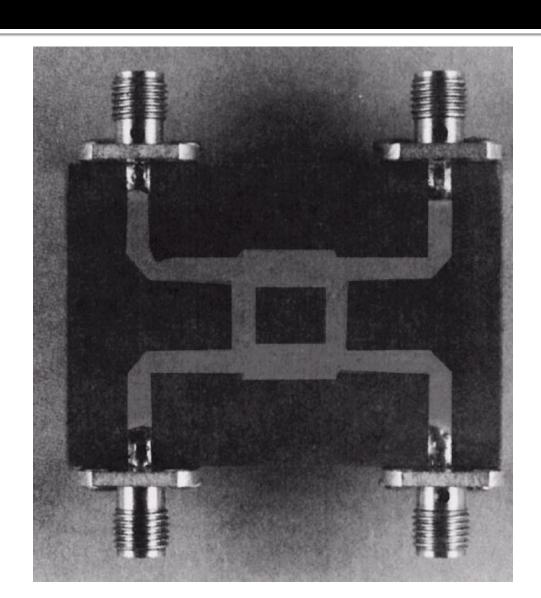
Coupled

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

The cuadrature (90°) hybrid



Quadrature coupler



The 180° ring hybrid (rat-race)

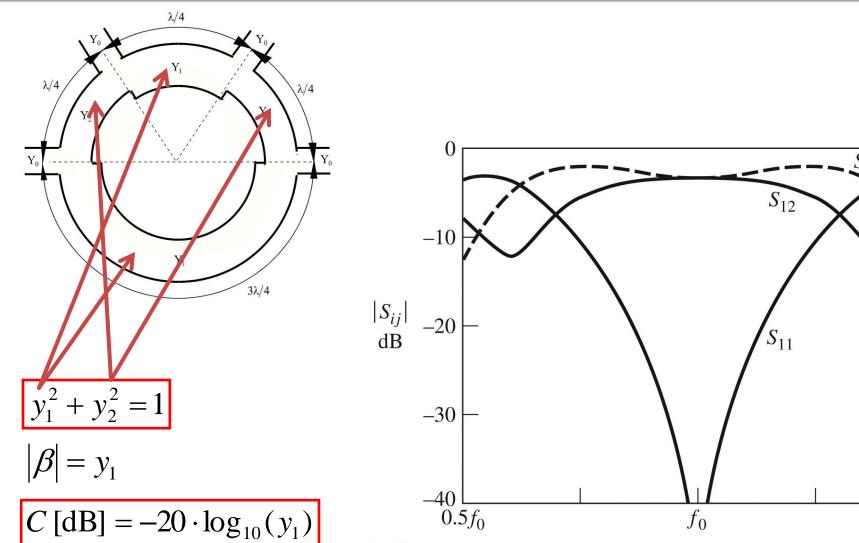


Figure 7.46 © John Wiley & Sons, Inc. All rights reserved. $1.5f_0$

Ring coupler

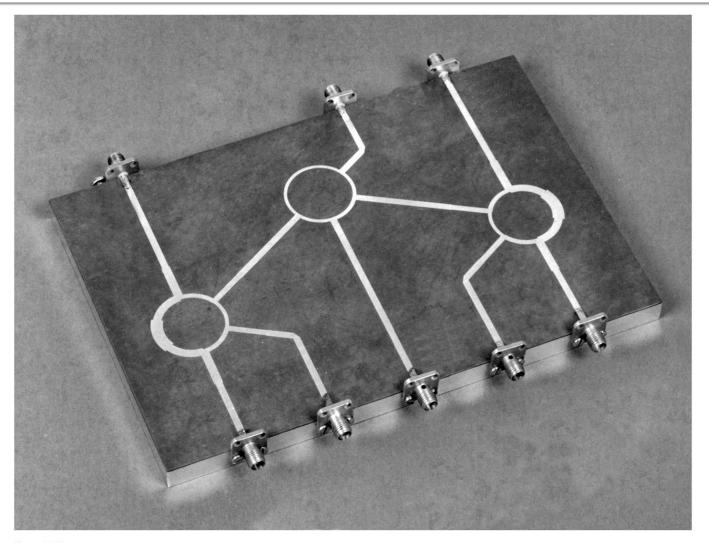


Figure 7.43 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

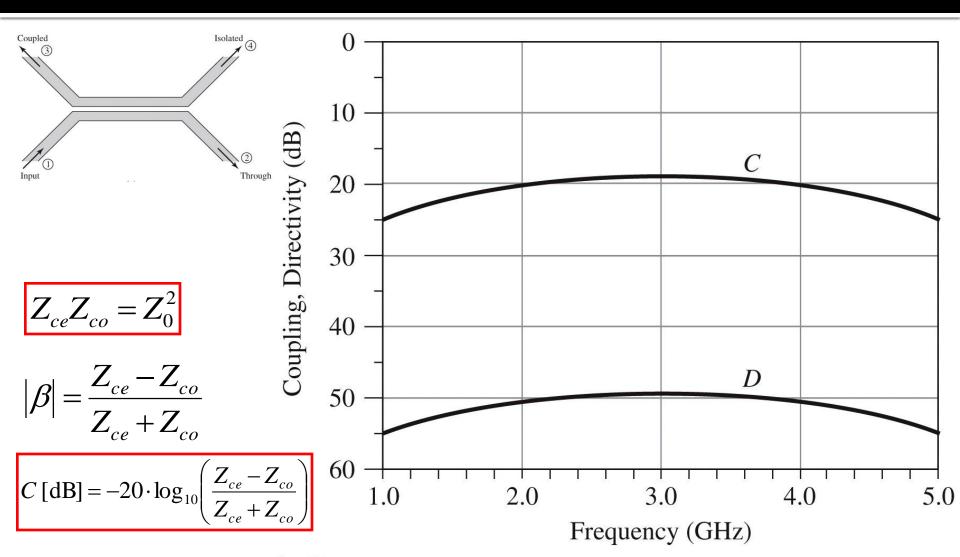
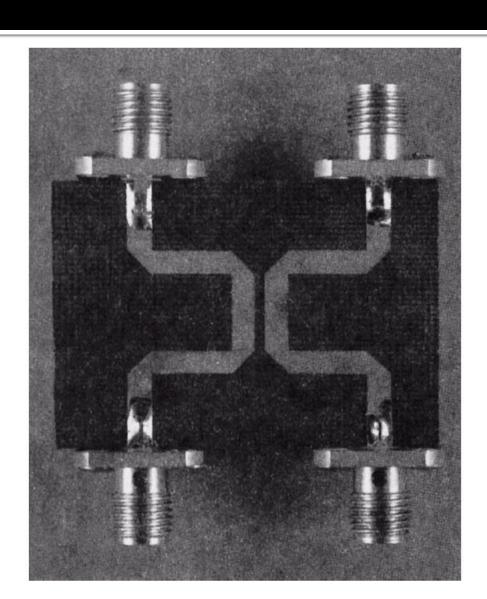


Figure 7.34

© John Wiley & Sons, Inc. All rights reserved.

Coupled line coupler



Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro